Descripteur
Termes IGN > mathématiques > statistique mathématique > régression > régression linéaire > régression multiple
régression multipleSynonyme(s)régression linéaire multiple |
Documents disponibles dans cette catégorie (61)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests / Joscha H. Menge in Landscape ecology, vol 38 n° 4 (April 2023)
[article]
Titre : Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests Type de document : Article/Communication Auteurs : Joscha H. Menge, Auteur ; Paul Magdon, Auteur ; Stephan Wöllauer, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 903 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] écosystème forestier
[Termes IGN] Fagus (genre)
[Termes IGN] forêt équienne
[Termes IGN] forêt inéquienne
[Termes IGN] gestion forestière
[Termes IGN] hêtraie
[Termes IGN] microclimat
[Termes IGN] régression multiple
[Termes IGN] semis de points
[Termes IGN] température de l'air
[Termes IGN] ThuringeRésumé : (auteur) Context: Forest microclimate influences biodiversity and plays a crucial role in regulating forest ecosystem functions. It is modified by forest management as a result of changes in forest structure due to tree harvesting and thinning.
Objectives: Here, we investigate the impacts of even-aged and uneven-aged forest management on stand- and landscape-level heterogeneity of forest microclimates, in comparison with unmanaged, old-growth European beech forest.
Methods: We combined stand structural and topographical indices derived from airborne laser scanning with climate observations from 23 meteorological stations at permanent forest plots within the Hainich region, Germany. Based on a multiple linear regression model, we spatially interpolated the diurnal temperature range (DTR) as an indicator of forest microclimate across a 4338 ha section of the forest with 50 m spatial resolution. Microclimate heterogeneity was measured as α-, β-, and γ-diversity of thermal niches (i.e. DTR classes).
Results: Even-aged forests showed a higher γ-diversity of microclimates than uneven-aged and unmanaged forests. This was mainly due to a higher β-diversity resulting from the spatial coexistence of different forest developmental stages within the landscape. The greater structural complexity at the stand-level in uneven-aged stands did not increase α-diversity of microclimates. Predicted DTR was significantly lower and spatially more homogenous in unmanaged forest compared to both types of managed forest.
Conclusion: If forest management aims at creating a wide range of habitats with different microclimates within a landscape, spatially co-existing types of differently managed and unmanaged forests should be considered, instead of focusing on a specific type of management, or setting aside forest reserves only.Numéro de notice : A2023-224 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10980-023-01596-z Date de publication en ligne : 30/01/2023 En ligne : https://doi.org/10.1007/s10980-023-01596-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103175
in Landscape ecology > vol 38 n° 4 (April 2023) . - pp 903 - 917[article]A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
[article]
Titre : Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia Type de document : Article/Communication Auteurs : Mitiku Badasa Moisa, Auteur ; Indale Niguse Dejene, Auteur ; Dessalegn Obsi Gemeda, Auteur Année de publication : 2022 Article en page(s) : pp 653 - 667 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] climat urbain
[Termes IGN] espace vert
[Termes IGN] étalement urbain
[Termes IGN] Ethiopie
[Termes IGN] flore urbaine
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de régression
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression multiple
[Termes IGN] surface imperméable
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization and population growth are the main problems faced by developing countries that lead to natural resource depletion in the periphery of the city. This research attempts to analyze the impacts of urban land use land cover (LULC) change on land surface temperature (LST) from 1991 to 2021 in Jimma city, southwestern Ethiopia. Landsat Thematic Mapper (TM) 1991, Landsat Enhanced Thematic Mapper Plus (ETM +) 2005, and Landsat-8 Operational land imagery (OLI)/Thermal Infrared Sensor (TIRS) 2021 were used in this study. Multispectral bands and thermal infrared bands of Landsat images were used to calculate LULC change, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and LST. The LULC of the study area was classified using a supervised classification method with the maximum likelihood algorithm. The results of this study clearly showed that there is a negative correlation between vegetation cover and LST. The decrease in vegetation coverage and expansion of impervious surfaces lead to elevated LST in urban areas. The loss of vegetation cover contributed to the increasing trend of LST. Moreover, the conversion of vegetation cover to impervious surfaces aggravates the problem of LST. The results revealed that the built-up area was increased at a rate of 0.4 km2/year from 1991 to 2021. The vegetation cover in the city declined due to urban expansion to the periphery of the city. Consequently, the dense vegetation and sparse vegetation were converted into built-up areas by approximately 5.2 km2 during the study period. The mean LST of the study area increased by 10.3 °C from 1991 to 2021 during the winter season in daytime. To improve the problems of climate change around urban areas, all stakeholders should work together to increase the urban green space coverage, which will contribute a significant role in mitigating LST and the urban heat island effect. More specifically, all residents could be accessible to public green spaces around big cities. Numéro de notice : A2022-893 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-022-00463-x Date de publication en ligne : 22/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00463-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102241
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 653 - 667[article]Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis Type de document : Article/Communication Auteurs : Das Subhasis, Auteur ; Partha Pratim Adhikary, Auteur ; Pravat Kumar Shit, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7800 - 7818 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse du paysage
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Calcutta
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] QGIS
[Termes IGN] régression multiple
[Termes IGN] service écosystémique
[Termes IGN] zone humide
[Termes IGN] zone urbaineRésumé : (auteur) Dynamics of ecosystem service value (ESV) of various wetlands has been assessed by researchers globally. But the impact of spatio-temporal variation of landscape metrics on ESV in the lower Gangetic plains has not been examined, fully. The present work has established linkages between landscape metrics and ESV in Kolkata urban agglomeration using support vector machine and multivariate regression analysis. Result indicates that wetland area has been reduced by 5.26%, 13.67% and 9.03% during the periods 1990–2000, 2000–2010 and 2010–2020, respectively and the ESV contributed by wetlands has been decreased by $131428, $323674 and $184649, respectively during the same period at an annual rate of 0.85%. Number of patches, mean patch area and edge density are the main determinants of wetland fragmentation and decreased by 44.12%, 10.23% and 8.65%, respectively during the last three decades. A wetland restoration strategy based on dynamic restoration, reactive restoration and wetland creation for the study area has been formulated, which can guide for sustainable management of wetland resources in Kolkata urban agglomeration. Numéro de notice : A2022-930 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1985174 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1985174 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102665
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7800 - 7818[article]Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks / Abdelkrim Bouasria in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks Type de document : Article/Communication Auteurs : Abdelkrim Bouasria, Auteur ; Khalid Ibno Namra, Auteur ; Abdelmejid Rahimi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 353 - 364 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] état du sol
[Termes IGN] image Landsat-OLI
[Termes IGN] image panchromatique
[Termes IGN] Maroc
[Termes IGN] matière organique
[Termes IGN] modèle de simulation
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] Perceptron multicouche
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) In agricultural systems, the regular monitoring of Soil Organic Matter (SOM) dynamics is essential. This task is costly and time-consuming when using the conventional method, especially in a very fragmented area and with intensive agricultural activity, such as the area of Sidi Bennour. The study area is located in the Doukkala irrigated perimeter in Morocco. Satellite data can provide an alternative and fill this gap at a low cost. Models to predict SOM from a satellite image, whether linear or nonlinear, have shown considerable interest. This study aims to compare SOM prediction using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). A total of 368 points were collected at a depth of 0–30 cm and analyzed in the laboratory. An image at 15 m resolution (MSPAN) was produced from a 30 m resolution (MS) Landsat-8 image using image pansharpening processing and panchromatic band (15 m). The results obtained show that the MLR models predicted the SOM with (training/validation) R2 values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images, respectively. In contrast, the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images, respectively. Image pansharpening improved the prediction accuracy by 2.60% and 4.30% and reduced the estimation error by 0.80% and 1.30% for the MLR and ANN models, respectively. Numéro de notice : A2022-722 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2026743 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2026743 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101665
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 353 - 364[article]Machine learning and natural language processing of social media data for event detection in smart cities / Andrei Hodorog in Sustainable Cities and Society, vol 85 (October 2022)PermalinkThe fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)PermalinkThe FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)PermalinkAnalyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data / Shailja Mamgain in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)PermalinkAn improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements [under review] / Olivier Bock in Atmospheric measurement techniques, vol 15 n° 19 ([01/04/2022])PermalinkEstimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau / Changkun Ma in Journal of Forestry Research, vol 33 n° 2 (April 2022)PermalinkPartitions of normalised multiple regression equations for datum transformations / Andrew Carey Ruffhead in Boletim de Ciências Geodésicas, vol 28 n° 1 ([01/03/2022])PermalinkAboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 ([15/02/2022])PermalinkSuspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 ([15/02/2022])PermalinkEstimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data / Fardin Moradi in Forests, vol 13 n° 1 (January 2022)Permalink