Descripteur
Termes IGN > aménagement > infrastructure > réseau technique > réseau de transport > réseau ferroviaire > voie ferrée
voie ferréeSynonyme(s)Rail chemin de fer |
Documents disponibles dans cette catégorie (60)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Railway lidar semantic segmentation with axially symmetrical convolutional learning / Antoine Manier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Railway lidar semantic segmentation with axially symmetrical convolutional learning Type de document : Article/Communication Auteurs : Antoine Manier, Auteur ; Julien Moras, Auteur ; Jean-Christophe Michelin , Auteur ; Hélène Piet-Lahanier, Auteur Année de publication : 2022 Article en page(s) : pp 135 - 142 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] scène 3D
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voie ferréeRésumé : (auteur) This paper presents a new deep-learning-based method for 3D Point Cloud Semantic Segmentation specifically designed for processing real-world LIDAR railway scenes. The new approach relies on the use of spatial local point cloud transformations for convolutional learning. These transformations allow an increased robustness to varying point cloud densities while preserving metric information and a sufficient descriptive ability. The resulting performances are illustrated with results on railway data from two distinct LIDAR point cloud datasets acquired in industrial settings. The quality of the extraction of useful information for maintenance operations and topological analysis is pointed together with a noticeable robustness to point cloud variations in distribution and point redundancy. Numéro de notice : A2022-433 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-135-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-135-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100739
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 135 - 142[article]Photogrammetric 3D mobile mapping of rail tracks / Philipp Glira in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
[article]
Titre : Photogrammetric 3D mobile mapping of rail tracks Type de document : Article/Communication Auteurs : Philipp Glira, Auteur ; K. ÖlsböckK., Auteur ; T. Kadiofsky, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 352 - 362 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Autriche
[Termes IGN] axe médian
[Termes IGN] compensation par faisceaux
[Termes IGN] compensation par moindres carrés
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] modèle numérique de surface
[Termes IGN] OpenStreetMap
[Termes IGN] orthoimage
[Termes IGN] point d'appui
[Termes IGN] reconstruction 3D
[Termes IGN] réseau ferroviaire
[Termes IGN] semis de points
[Termes IGN] voie ferréeRésumé : (auteur) Recent developments in the field of rail vehicles increased the demand for accurate and up-to-date 3D maps of rail track networks. Collision avoidance systems, semi-automated, or fully autonomous rail vehicles strongly benefit from such high quality maps. In this work, we present a fully automatic, photogrammetric method for the 3D reconstruction of rail track segments. More specifically, the center line of the rail track is reconstructed as a georeferenced and continuous 3D cubic spline. The main data inputs are collected while driving the rail vehicle along the segment: (a) images from a front-looking camera and (b) observations from a low-cost GNSS receiver. Optional data inputs can be used to increase the reconstruction accuracy, namely (c) an a priori rail track (e.g. from OpenStreetMap), (d) a digital height model (DHM), and (e) ground control points (GCPs). The rail track is estimated in post processing (offline) by a weighted least squares adjustment (LSA). The core of the LSA is the bundle adjustment of images. It is extended by additional geometric constraints which exploit the geometric relations between the rail track, the rail vehicle, and the camera trajectory. As a consequence, in contrast to many related methods, the rails need not to be visible in the images to map the rail track. We applied the method to reconstruct a 13 km long tram line in Vienna (Austria). We found that the local geometry of the track can be well reconstructed from the image sequence. However, if the low-cost GNSS receiver is used as single georeferencing source, the track shows a strong drift behavior. This drift can significantly be minimized over the entire track if the above mentioned optional data inputs are used. Numéro de notice : A2022-034 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2021.09.006 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99327
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 352 - 362[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Reconnaissance automatique d’objets pour le jumeau numérique ferroviaire à partir d’imagerie aérienne / Valentin Desbiolles in XYZ, n° 167 (juin 2021)
[article]
Titre : Reconnaissance automatique d’objets pour le jumeau numérique ferroviaire à partir d’imagerie aérienne Type de document : Article/Communication Auteurs : Valentin Desbiolles, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 38 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] Autocad Map
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dessin assisté par ordinateur
[Termes IGN] détection automatique
[Termes IGN] détection d'objet
[Termes IGN] image aérienne
[Termes IGN] jumeau numérique
[Termes IGN] orthoimage
[Termes IGN] reconnaissance d'objets
[Termes IGN] transformation de Hough
[Termes IGN] voie ferréeRésumé : (Auteur) Ce projet propose une étude sur l’insertion automatique d’objets utiles au fonctionnement d’une voie ferrée dans un plan DAO. Ces objets sont visibles sur des orthophotos acquises par moyens aéroportés (drone ou hélicoptère). La solution se scinde en deux grands axes : 1- la détection et la localisation des objets d’intérêt sur une orthophoto ; 2- leurs insertions dans un plan DAO. Ce PFE parcourt ainsi les différentes techniques pour automatiser une phase de reconnaissance de certains éléments cibles sur une image pour finir sur le développement d’une méthode permettant de les reporter dans un plan DAO automatiquement. Numéro de notice : A2021-462 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Date de publication en ligne : 01/06/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97928
in XYZ > n° 167 (juin 2021) . - pp 33 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2021021 RAB Revue Centre de documentation En réserve L003 Disponible Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
[article]
Titre : Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) Type de document : Article/Communication Auteurs : Hakan Nefeslioglu, Auteur ; Beste Tavus, Auteur ; Melahat Er, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aléa
[Termes IGN] analyse de sensibilité
[Termes IGN] carte géomorphologique
[Termes IGN] cartographie des risques
[Termes IGN] classification par réseau neuronal
[Termes IGN] effondrement de terrain
[Termes IGN] grotte
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] itinéraire
[Termes IGN] surveillance géologique
[Termes IGN] train à grande vitesse
[Termes IGN] Turquie
[Termes IGN] voie ferrée
[Termes IGN] vulnérabilitéRésumé : (auteur) Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019-2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions. Numéro de notice : A2021-232 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030119 Date de publication en ligne : 27/02/2021 En ligne : https://doi.org/10.3390/ijgi10030119 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97226
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 119[article]Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway / Shengbo Xie in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
[article]
Titre : Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway Type de document : Article/Communication Auteurs : Shengbo Xie, Auteur ; Jianjun Qu, Auteur ; Yingjun Pang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 154 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] météorologie locale
[Termes IGN] modèle dynamique
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] sable
[Termes IGN] Tibet
[Termes IGN] variation saisonnière
[Termes IGN] vent de sable
[Termes IGN] vitesse
[Termes IGN] voie ferréeRésumé : (auteur) Blown sand hazards at the Jieqiong section of the Lhasa–Shigatse railway are severe, and their formation mechanism is unclear. Moreover, sand prevention and control work cannot be carried out. Therefore, the dynamic mechanism of blown sand at the Jieqiong section of the Lhasa–Shigatse Railway was investigated by field observation, laboratory analysis, and calculation. Results show that the yearly sand–moving wind at the Jieqiong section commonly originates from the SW direction. The yearly resultant drift direction and the yearly resultant angle of the maximum possible sand transport quantity are NE direction. The angle between railway trend and sand transport direction is 5°–30°. During dry season, sand materials are blown up by the wind, forming wind–sand flow and movement to the NE direction, at which they are blocked by the railway roadbed. Consequently, accumulation occurs and causes serious damage. Strong wind and dryness are synchronous within a season. The directions of sand source and prevailing wind are consistent, thereby aggravating the blown sand dynamic further. The present results provide a reference for controlling sand hazards in the locale. Numéro de notice : A2021-109 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1863268 Date de publication en ligne : 28/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1863268 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96906
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 154 - 166[article]Les stations virtuelles au service de la cartographie mobile / Mathieu Regul in XYZ, n° 165 (décembre 2020)PermalinkPermalinkReconnaissance automatique d’objets pour le jumeau numérique ferroviaire à partir d’imagerie aérienne / Valentin Desbiolles (2020)PermalinkAltamétris : des drones et des rails / Anonyme in Géomatique expert, n° 122 (mai-juin 2018)PermalinkAnalyse du risque végétation dans les emprises ferroviaires à partir de données LiDAR acquises par drones / Luc Perrin in XYZ, n° 154 (mars - mai 2018)PermalinkLe MMS, un système mobile de relevé 3D / Christophe Dupré in Géomètre, n° 2148 (juin 2017)PermalinkIndustrialisation des processus d'extraction d'objets à partir de données photogrammétriques par drones / Jérémie Brossard in XYZ, n° 150 (mars - mai 2017)PermalinkFusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring / Yuanyuan Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)PermalinkUse of the gyrotheodolite in underground networks of long high-speed railway tunnels / J. Velasco-Gómez, in Survey review, vol 48 n° 350 (September 2016)PermalinkGeoreferencing of condition information from railway infrastructure / Lars Johannes in Navigation aérienne, maritime, spatiale, terrestre, vol 63 n° 250 (mai - août 2016)Permalink