Descripteur
Documents disponibles dans cette catégorie (52)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
[article]
Titre : Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets Type de document : Article/Communication Auteurs : Li Geng, Auteur ; Ke Zhang, Auteur Année de publication : 2023 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] mobilité urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] TwitterRésumé : (auteur) Urban planners have been long interested in understanding how urban structure and activities are mutually influenced. Human mobility and economic activities naturally drive the formation of road network structure and the accessibility of the latter shapes the patterns of movement flow across urban space. In this paper, we perform an exploratory study on the relationship between the street network structure and the intensity of human movement in urban areas. We focus on two cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the corresponding street networks as obtained from OpenStreetMap. We apply three network centrality measures, including closeness, betweenness and straightness centrality, calculated at a global or local scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking) with its directional accessibility, to uncover the structural properties of urban street networks. We further design an urban area transition network and apply PageRank to capture the intensity of human mobility. Our correlation analysis indicates different centrality metrics have different levels of correlation with the intensity of human movement. The closeness centrality consistently shows the highest correlation (with a coefficient around 0.6) with human movement intensity when calculated at a global scale, while straightness centrality often shows no correlation at the global scale or weaker correlation ρ≈0.4 at the local scale. The correlation levels further depend on the type of directional accessibility and of various types of transportation modes. Hence, the directionality and transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the strength of the correlation varies in the two cities examined, indicating potential differences in urban spatial structure and human mobility patterns. Numéro de notice : A2023-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.3390/ijgi12010007 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.3390/ijgi12010007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102433
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 7[article]Understanding public perspectives on fracking in the United States using social media big data / Xi Gong in Annals of GIS, vol 29 n° 1 (January 2023)
[article]
Titre : Understanding public perspectives on fracking in the United States using social media big data Type de document : Article/Communication Auteurs : Xi Gong, Auteur ; Yujian Lu, Auteur ; Daniel Beene, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 21 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse socio-économique
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] enquête sociologique
[Termes IGN] Etats-Unis
[Termes IGN] fracturation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] régression géographiquement pondérée
[Termes IGN] TwitterRésumé : (auteur) People’s attitudes towards hydraulic fracturing (fracking) can be shaped by socio-demographics, economic development, social equity and politics, environmental impacts, and fracking-related information. Existing research typically conducts surveys and interviews to study public attitudes towards fracking among a small group of individuals in a specific geographic area, where limited samples may introduce bias. Here, we compiled geo-referenced social media big data from Twitter during 2018–2019 for the entire United States to present a more holistic picture of people’s attitudes towards fracking. We used a multiscale geographically weighted regression (MGWR) to investigate county-level relationships between the aforementioned factors and percentages of negative tweets concerning fracking. Results indicate spatial heterogeneity and varying scales of those associations. Counties with higher median household income, larger African American populations, and/or lower educational level are less likely to oppose fracking, and these associations show global stationarity in all contiguous US counties. Eastern and Central US counties with higher unemployment rates, counties east of the Great Plains with less fracking sites nearby, and Western and Gulf Coast region counties with higher health insurance enrolments are more likely to oppose fracking activities. These three variables show clear East-West geographical divides in influencing public perspective on fracking. In counties across the southern Great Plains, negative attitudes towards fracking are less often vocalized on Twitter as the share of Republican voters increases. These findings have implications for both predicting public perspectives and needed policy adjustments. The methodology can also be conveniently applied to investigate public perspectives on other controversial topics. Numéro de notice : A2023-160 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2022.2121856 Date de publication en ligne : 10/09/2022 En ligne : https://doi.org/10.1080/19475683.2022.2121856 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102862
in Annals of GIS > vol 29 n° 1 (January 2023) . - pp 21 - 35[article]A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]An analysis of twitter as a relevant human mobility proxy / Fernando Terroso-Saenz in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : An analysis of twitter as a relevant human mobility proxy Type de document : Article/Communication Auteurs : Fernando Terroso-Saenz, Auteur ; Andres Muñoz, Auteur ; Francisco Arcas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 677 - 706 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Espagne
[Termes IGN] géobalise
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] TwitterRésumé : (auteur) During the last years, the analysis of spatio-temporal data extracted from Online Social Networks (OSNs) has become a prominent course of action within the human-mobility mining discipline. Due to the noisy and sparse nature of these data, an important effort has been done on validating these platforms as suitable mobility proxies. However, such a validation has been usually based on the computation of certain features from the raw spatio-temporal trajectories extracted from OSN documents. Hence, there is a scarcity of validation studies that evaluate whether geo-tagged OSN data are able to measure the evolution of the mobility in a region at multiple spatial scales. For that reason, this work proposes a comprehensive comparison of a nation-scale Twitter (TWT) dataset and an official mobility survey from the Spanish National Institute of Statistics. The target time period covers a three-month interval during which Spain was heavily affected by the COVID-19 pandemic. Both feeds have been compared in this context by considering different mobility-related features and spatial scales. The results show that TWT could capture only a limited number features of the latent mobility behaviour of Spain during the study period. Numéro de notice : A2022-866 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00460-z Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1007/s10707-021-00460-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102159
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 677 - 706[article]A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management / A. Marcela Suarez in Cartography and Geographic Information Science, Vol 49 n° 5 (September 2022)
[article]
Titre : A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management Type de document : Article/Communication Auteurs : A. Marcela Suarez, Auteur ; Keith C. Clarke, Auteur Année de publication : 2022 Article en page(s) : pp 443 - 463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] classement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] fiabilité des données
[Termes IGN] filtrage d'information
[Termes IGN] gestion de crise
[Termes IGN] pertinence
[Termes IGN] qualité des données
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Tweets posted by the general public during disaster events represent timely, up-to-date, and on-site data that may be useful for emergency responders. However, since Twitter data has been deemed to be unverifiable and untrustworthy, it is challenging to identify those reliable and relevant tweets that can inform emergency response operations. Although computational methods exist both to classify overwhelming amounts of tweets and to filter those relevant to emergency response, using contextual geographic information regarding the disaster event to filter tweets has been overlooked. We review the existing research on the quality of data contributed by the general public from a geographical perspective, and then propose an approach to prioritize tweets for emergency response based on their relevance and reliability. The novelty of the approach is twofold: a) the use of both authoritative data such as hazard-related information and on-the-ground reports provided by weather spotters and validated by the National Weather Service; and b) the fact that it leverages tweets content as well as their geographical context and location. Using Hurricane Harvey in 2017 as a case study, results show that by following the proposed approach 79% of tweets sent from post-identified flooded areas were classified as of high or medium relevance and reliability. This suggests that the proposed approach can provide an accurate prioritization of tweets to be used for real time emergency management. Numéro de notice : A2022-633 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2081257 En ligne : https://doi.org/10.1080/15230406.2022.2081257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101399
in Cartography and Geographic Information Science > Vol 49 n° 5 (September 2022) . - pp 443 - 463[article]Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkThe effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)PermalinkHuman movement patterns of different racial-ethnic and economic groups in U.S. top 50 populated cities: What can social media tell us about isolation? / Meiliu Wu in Annals of GIS, vol 28 n° 2 (April 2022)PermalinkGazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkAnnotation sémantique pour la géolocalisation d'entités spatiales dans des tweets / Gaëtan Caillaut (2022)PermalinkAutomated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)PermalinkCIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)PermalinkIntroducing diversion graph for real-time spatial data analysis with location based social networks / Sameera Kannangara (2021)PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)PermalinkEvaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)Permalink