Descripteur
Termes IGN > sciences humaines et sociales > vie des organisations > administration > protection civile
protection civileSynonyme(s)sécurité civileVoir aussi |
Documents disponibles dans cette catégorie (147)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Modelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)
[article]
Titre : Modelling evacuation preparation time prior to floods: A machine learning approach Type de document : Article/Communication Auteurs : R. Sreejith, Auteur ; K.R. Sinimole, Auteur Année de publication : 2022 Article en page(s) : n° 104257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] chronométrie
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de crise
[Termes IGN] inondation
[Termes IGN] Kerala (Inde ; état)
[Termes IGN] modèle de simulation
[Termes IGN] plan de prévention des risques
[Termes IGN] questionnaire
[Termes IGN] risque naturel
[Termes IGN] secours d'urgenceRésumé : (auteur) Flooding is a significant hazard responsible for substantial damage and risks to human life worldwide. Effective emergency evacuation to a safer location remains a concern even though the crisis can be predicted and warnings were given. During a calamity, most residents cannot quickly and securely flee. As it is crucial to start evacuation at the right time to have a safe evacuation, this study focuses on a machine learning-based model for predicting a household's evacuation preparation time in the incident of a flood. The study is based on the data collected from flood-affected people from Kerala, India, through a questionnaire. The study indicates that people's demographic, geographical and behavioural aspects, awareness of natural hazards and management are the critical components for improved emergency actions. Further, the article also analysed the characteristics of the respondents and successfully created clusters in which the respondents broadly belong, which will help the rescue team operationalize the evacuation process. Numéro de notice : A2022-819 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104257 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101986
in Sustainable Cities and Society > vol 87 (December 2022) . - n° 104257[article]An improved optimization model for crowd evacuation considering individual exit choice preference / Fei Gao in Transactions in GIS, vol 26 n° 7 (November 2022)
[article]
Titre : An improved optimization model for crowd evacuation considering individual exit choice preference Type de document : Article/Communication Auteurs : Fei Gao, Auteur ; Zhiqiang Du, Auteur ; Martin Werner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2850 - 2873 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] comportement
[Termes IGN] événement
[Termes IGN] gestion de crise
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] planification
[Termes IGN] secours d'urgenceRésumé : (auteur) Guidance-assisted crowd evacuation is a process of combining individual exit choice behavior with managers'exit assignment control. The knowledge of individual exit choice preference is of great significance for optimizing global exit assignment planning. This study proposes an improved optimization model for crowd evacuation by integrating the individual-level exit choice preference analysis with system-level exit assignment optimization to represent more realistic crowd evacuation decisions. First, the impact factors of individual exit choice behavior are considered in a mixed logit model to predict the probability of each individual choosing each exit in specific situations. Second, a preference-based exit filtering strategy is designed to analyze the sensible alternative exits for individuals or groups in multi-scale evacuation cells. Finally, to pursue optimal exit assignment planning, a multi-objective particle swarm optimization algorithm and an improved social force model are adopted to simulate the process of crowd evacuation and evaluate the performance of the specific exit assignment plans. The case study of an outdoor multiple-exit scenario in Xi'an, China, indicates that the proposed model can help managers to understand the heterogeneity of individual evacuation behaviors. Furthermore, it will support more reliable and realistic evacuation decisions in real-life situations than conventional plans that typically implement the top-n strategy. Numéro de notice : A2022-833 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12984 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12984 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102216
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 2850 - 2873[article]A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China / Liangting Zheng in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China Type de document : Article/Communication Auteurs : Liangting Zheng, Auteur ; Jia Li, Auteur ; Wenying Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6519 - 6537 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] diagramme de Voronoï
[Termes IGN] données médicales
[Termes IGN] données routières
[Termes IGN] épidémie
[Termes IGN] interpolation inversement proportionnelle à la distance
[Termes IGN] interpolation par pondération de zones
[Termes IGN] maladie virale
[Termes IGN] médecine humaine
[Termes IGN] secours d'urgence
[Termes IGN] Yunnan (Chine)Résumé : (auteur) COVID-19 poses a major threat to global health care systems, and the recent surge in mortality rates confirms the importance of timely access to care. The capacity of medical service providers is reflected both in the spatial accessibility of medical institutions and in the spatial scope of their services. Therefore, this study aims to investigate the spatial scope of services and spatial accessibility of COVID-19-designated hospitals in Yunnan Province, China. Data are collected from multiple sources and included COVID-19 case data, road data, and data from designated hospitals for COVID-19 in Yunnan Province. The optimal spatial service range for designated hospitals is delineated using a weighted Voronoi diagram that takes into account the number of medical staff and the number of beds in the hospital. Traffic accessibility coefficients are introduced to analyze the spatial accessibility of COVID-19-designated hospitals, and the spatial accessibility of each designated hospital is visualized using the inverse distance weighting interpolation algorithm. The results show the following: (1) COVID-19 cases in Yunnan Province are concentrated in the central and northern regions. The largest single cells in the weighted Voronoi diagram are mainly Pu'er (59168 km2), Honghe (35569 km2), and Baoshan (46795 km2), and the time cost of attainting medical treatment is greater for residents in marginal areas. (2) Within the service space of designated hospitals, 90.24% of patients could obtain medical assistance within 2 h. Those in 52 (36.36%) counties within a municipal jurisdiction could obtain medical services within 2 h, and 76.47% of counties have above-average spatial accessibility. (3) Medical resources in Yunnan Province should be shifted toward the high-risk east-central region and the less spatially accessible in southern and western regions. Numéro de notice : A2022-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943008 Date de publication en ligne : 09/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101674
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6519 - 6537[article]Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review / Sahar S. Matin in Geocarto international, Vol 37 n° 21 ([01/10/2022])
[article]
Titre : Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review Type de document : Article/Communication Auteurs : Sahar S. Matin, Auteur ; Biswajeet Pradhan, Auteur Année de publication : 2022 Article en page(s) : pp 6186 - 6212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] cartographie thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] données lidar
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] secours d'urgence
[Termes IGN] séismeRésumé : (auteur) Assessing the extent and level of building damages is crucial to support post-earthquake rescue and relief activities. There is a large body of literature proposing novel frameworks for automating earthquake-induced building damage mapping using high-resolution remote sensing images. Yet, its deployment in real-world scenarios is largely limited to the manual interpretation of images. Although manual interpretation is costly and labor-intensive, it is preferred over automatic and semi-automatic building damage mapping frameworks such as machine learning and deep learning because of its reliability. Therefore, this review paper explores various automatic and semi-automatic building damage mapping techniques with a quest to understand the pros and cons of different methodologies to narrow the gap between research and practice. Further, the research gaps and opportunities are identified for the future development of real-world scenarios earthquake-induced building damage mapping. This review can serve as a guideline for researchers, decision-makers, and practitioners in the emergency management service domain. Numéro de notice : A2022-719 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1933213 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1933213 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101651
in Geocarto international > Vol 37 n° 21 [01/10/2022] . - pp 6186 - 6212[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022211 RAB Revue Centre de documentation En réserve L003 Disponible Exploring multi-modal evacuation strategies for a landlocked population using large-scale agent-based simulations / Kevin Chapuis in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)PermalinkA geographical and content-based approach to prioritize relevant and reliable tweets for emergency management / A. Marcela Suarez in Cartography and Geographic Information Science, Vol 49 n° 5 (September 2022)PermalinkUse of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand / Kiatkulchai Jitt-Aer in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkModular multi-dimensional tool for emergency evacuation including location-based social network data / Ilil Blum Shem-Tov in Journal of location-based services, vol 16 n° 1 (March 2022)PermalinkSimulation d'ouragans et de collectes de déchets sur QGIS pour l'amélioration de la collecte des déchets post-ouragan / Quy Thy Truong in Cartes & Géomatique, n° 247-248 (mars-juin 2022)PermalinkA user-centric optimization of emergency map symbols to facilitate common operational picture / Tomasz Opach in Cartography and Geographic Information Science, vol 49 n° 2 (March 2022)PermalinkAutomated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)PermalinkPermalinkA rapid assessment method for earthquake-induced landslide casualties based on GIS and logistic regression model / Yuqian Dai in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkRoad traffic crashes and emergency response optimization: a geo-spatial analysis using closest facility and location-allocation methods / Sulaiman Yunus in Geomatics, Natural Hazards and Risk, vol 13 (2022)Permalink