Descripteur
Documents disponibles dans cette catégorie (10)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
LinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
[article]
Titre : LinkClimate: An interoperable knowledge graph platform for climate data Type de document : Article/Communication Auteurs : Jiantao Wu, Auteur ; Fabrizio Orlandi, Auteur ; Declan O'Sullivan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] données multisources
[Termes IGN] historique des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] National oceanic and atmospheric administration
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] réseau sémantique
[Termes IGN] site wiki
[Termes IGN] SPARQL
[Termes IGN] web sémantiqueRésumé : (auteur) Climate science has become more ambitious in recent years as global awareness about the environment has grown. To better understand climate, historical climate(e.g. archived meteorological variables such as temperature, wind, water, etc.) and climate-related data (e.g. geographical features and human activities) are widely used by today’s climate research to derive models for an explainable climate change and its effects. However, such data sources are often dispersed across a multitude of disconnected data silos on the Web. Moreover, there is a lack of advanced climate data platforms to enable multi-source heterogeneous climate data analysis, therefore, researchers must face a stern challenge in collecting and analyzing multi-source data. In this paper, we address this problem by proposing a climate knowledge graph for the integration of multiple climate data and other data sources into one service, leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. The proposed knowledge graph is primarily composed of data from the National Oceanic and Atmospheric Administration’s daily climate summaries, OpenStreetMap, and Wikidata, and it supports joint data queries on these widely used databases. This paper shows, with a use case in Ireland and the United Kingdom, how climate researchers could benefit from this platform as it allows them to easily integrate datasets from different domains and geographical locations. Numéro de notice : A2022-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2022.105215 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101897
in Computers & geosciences > vol 169 (December 2022) . - n° 105215[article]ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Deep learning for toponym resolution: Geocoding based on pairs of toponyms / Jacques Fize in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
[article]
Titre : Deep learning for toponym resolution: Geocoding based on pairs of toponyms Type de document : Article/Communication Auteurs : Jacques Fize, Auteur ; Ludovic Moncla , Auteur ; Bruno Martins, Auteur Année de publication : 2021 Article en page(s) : n° 818 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage profond
[Termes IGN] échantillonnage
[Termes IGN] géocodage
[Termes IGN] matrice de co-occurrence
[Termes IGN] site wiki
[Termes IGN] toponyme
[Termes IGN] zone d'intérêtRésumé : (auteur) Geocoding aims to assign unambiguous locations (i.e., geographic coordinates) to place names (i.e., toponyms) referenced within documents (e.g., within spreadsheet tables or textual paragraphs). This task comes with multiple challenges, such as dealing with referent ambiguity (multiple places with a same name) or reference database completeness. In this work, we propose a geocoding approach based on modeling pairs of toponyms, which returns latitude-longitude coordinates. One of the input toponyms will be geocoded, and the second one is used as context to reduce ambiguities. The proposed approach is based on a deep neural network that uses Long Short-Term Memory (LSTM) units to produce representations from sequences of character n-grams. To train our model, we use toponym co-occurrences collected from different contexts, namely textual (i.e., co-occurrences of toponyms in Wikipedia articles) and geographical (i.e., inclusion and proximity of places based on Geonames data). Experiments based on multiple geographical areas of interest—France, United States, Great-Britain, Nigeria, Argentina and Japan—were conducted. Results show that models trained with co-occurrence data obtained a higher geocoding accuracy, and that proximity relations in combination with co-occurrences can help to obtain a slightly higher accuracy in geographical areas with fewer places in the data sources. Numéro de notice : A2021-927 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article DOI : 10.3390/ijgi10120818 Date de publication en ligne : 02/12/2021 En ligne : https://doi.org/10.3390/ijgi10120818 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99293
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 818[article]Consolidation of crowd-sourced geo-ragged data for parameterized travel recommendations / Ago Luberg (2021)
Titre : Consolidation of crowd-sourced geo-ragged data for parameterized travel recommendations Type de document : Thèse/HDR Auteurs : Ago Luberg, Auteur ; Tanel Tammet, Directeur de thèse Editeur : Tallinn [Estonia] : Tallinn University of Technology Année de publication : 2021 Importance : 159 p. Format : 21 x 30 cm Note générale : bibliographie
Dissertation accepted for the defence of the degree of Doctor of Philosophy in Computer ScienceLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] base de données
[Termes IGN] conception orientée utilisateur
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction de données
[Termes IGN] géoréférencement
[Termes IGN] point d'intérêt
[Termes IGN] Riga
[Termes IGN] site wiki
[Termes IGN] système de recommandation
[Termes IGN] Tallinn
[Termes IGN] taxinomie
[Termes IGN] tourismeRésumé : (auteur) The research covered in this thesis is focused on different aspects of the task of creating automated recommendations for tourism, focusing mostly on places of interest like beautiful views, architectural landmarks, charming areas etc. A significant amount of work has been spent on designing and developing actual recommender systems - Sightsplanner, Sightsmap and the automated recommender of Visit Estonia - and their data harvesting methods in order to create a platform for showing the feasibility of the new methods designed and experimented with. The main results of our research are split between three subfields:
• Knowledge engineering: we have shown how to formalize fuzzy and uncertain POI categories along with suitable ontologies and reasoner-based algorithms for object matching and score calculation in a real-life context of actual POI-s, available data and easily expressable user preferences.
• Machine learning: we have designed a learnable detection system for detecting duplicate POIs from different databases, usable for cross- category, cross-language and cross-city datasets.
• We show that learning on Tallinn eateries improved the algorithm parameters to such a degree that on Riga data containing also museums and galleries it gave us 98% accuracy versus 85% accuracy achieved by tuning the algorithm parameters manually.
• Knowledge extraction: we have designed an algorithm for high-quality keyword extraction from short crowd-sourced POI descriptions in different languages, able to find a suitable name and to add suitable types to the POI. Our clusterization algorithm is able to merge the POIs based on the extracted data: on the Panoramio and Wikipedia data about U.K. and French locations it was able to find 56% of Wikipedia objects from the textual titles/annotations of Panoramio pictures in the area.Note de contenu : 1- Introduction
2- Related work
3- Involvement in recommender projects
4- Data acquisition and information extraction
5- Data deduplication (using machine learning)
6- Location category and name detection
7- Data storage and object score calculation
8- Conclusions
9- Future workNuméro de notice : 28600 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Thèse étrangère Note de thèse : PhD Thesis : Computer Science : Tallinn University of Technology : 2021 DOI : 10.23658/taltech.23/2021 En ligne : https://doi.org/10.23658/taltech.23/2021 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99407 Conceptualising the geographic world: the dimensions of negotiation in crowdsourced cartography / Andrea Ballatore in International journal of geographical information science IJGIS, vol 29 n° 12 (December 2015)PermalinkTowards a conceptual framework for WikiGIS / Wided Batita in Future internet, vol 6 n° 4 (December 2014)PermalinkNavipedia, the GNSS Wiki: A reference for Global Navigation Satellite Systems / Teresa Ferreira in Inside GNSS, vol 7 n° 6 (November - December 2012)PermalinkWikiSIG et GeoDesign collaboratif. Proposition d’un cadre théorique / Wided Batita in Revue internationale de géomatique, vol 22 n° 2 (Juin - août 2012)PermalinkQuelle géomatique pour quelles démarches participatives ? / Françoise de Blomac in SIG la lettre, n° 126 (avril 2011)Permalink