Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > triangulation (topologie) > Triangulated Irregular Network
Triangulated Irregular NetworkSynonyme(s)TIN ;réseau triangulé irrégulier Maillage triangulé irrégulier |
Documents disponibles dans cette catégorie (103)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Integrating topographic knowledge into point cloud simplification for terrain modelling / Jun Chen in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Integrating topographic knowledge into point cloud simplification for terrain modelling Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Liyang Xiong, Auteur ; Bowen Yin, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 988 - 1008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données topographiques
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain models are widely used to depict the shape of the Earth’s surface. With the development of photogrammetric methods, point cloud data have become one of the most popular data sources for terrain modelling. However, the obtained point clouds are of high density, which often increases redundancy rather than improving accuracy. Therefore, point cloud simplification should be a core component of terrain modelling. This paper proposes a point cloud simplification method by integrating topographic knowledge into terrain modelling (TKPCS). The method contains two steps: (1) topographic knowledge recognition and construction and (2) point cloud simplification using this topographic knowledge for terrain modelling. The proposed approach is benchmarked against improved versions of existing methods to validate its capability and accuracy in digital elevation model construction and terrain derivative extraction. The results show that the simplified points of the TKPCS method can generate finer resolution terrain models with higher accuracy and greater information entropy. The good performance of the TKPCS method is also stable at different scales. This work endeavours to transform perceptive topographic knowledge into a process of point cloud simplification and can benefit future research related to terrain modelling. Numéro de notice : A2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2023.2180801 Date de publication en ligne : 28/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2180801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103138
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 988 - 1008[article]Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)
Titre : PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet , Auteur ; Marc Pierrot-Deseilligny , Auteur Editeur : Computer vision foundation CVF Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition workshops 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : pp 6526 - 6535 Note générale : bibliographie
voir aussi https://openaccess.thecvf.com/content/CVPR2023W/PCV/supplemental/Wu_PSMNet-FusionX3_LiDAR-Guided_Deep_CVPRW_2023_supplemental.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne à axe vertical
[Termes IGN] scène 3D
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Dense image matching (DIM) and LiDAR are two complementary techniques for recovering the 3D geometry of real scenes. While DIM provides dense surfaces, they are often noisy and contaminated with outliers. Conversely, LiDAR is more accurate and robust, but less dense and more expensive compared to DIM. In this work, we investigate learning-based methods to refine surfaces produced by photogrammetry with sparse LiDAR point clouds. Unlike the current state-of-the-art approaches in the computer vision community, our focus is on aerial acquisitions typical in photogrammetry. We propose a densification pipeline that adopts a PSMNet backbone with triangulated irregular network interpolation based expansion, feature enhancement in cost volume, and conditional cost volume normalization, i.e. PSMNet-FusionX3. Our method works better on low density and is less sensitive to distribution, demonstrating its effectiveness across a range of LiDAR point cloud densities and distributions, including analyses of dataset shifts. Furthermore, we have made both our aerial (image and disparity) dataset and code available for public use. Further information can be found at https://github.com/ whuwuteng/PSMNet-FusionX3. Numéro de notice : C2023-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication DOI : sans En ligne : https://openaccess.thecvf.com/content/CVPR2023W/PCV/papers/Wu_PSMNet-FusionX3_Li [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103277 A boundary-based ground-point filtering method for photogrammetric point-cloud data / Seyed Mohammad Ayazi in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)
[article]
Titre : A boundary-based ground-point filtering method for photogrammetric point-cloud data Type de document : Article/Communication Auteurs : Seyed Mohammad Ayazi, Auteur ; Mohammad Saadatseresht, Auteur Année de publication : 2022 Article en page(s) : pp 583 - 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] canopée
[Termes IGN] détection de contours
[Termes IGN] filtrage de points
[Termes IGN] forêt
[Termes IGN] Iran
[Termes IGN] masque de végétation
[Termes IGN] montagne
[Termes IGN] polygone
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Ground-point filtering from point-cloud data is an important process in remote sensing and the photogrammetric map-production line, especially in generating digital elevation models from airborne lidar and aerial photogrammetric point-cloud data. In this article, a new and simple boundary-based method is proposed for ground-point filtering from the photogrammetric point-cloud data. The proposed method uses the local height difference to extract the boundaries of objects. Then the extracted boundary points are traced to generate polygons around the borders of any objects on the ground. Finally, the points located inside these polygons, which are classified as non-ground points, are filtered. The experimental results on the photogrammetric point cloud show that the proposed method can adapt to complex environments. The total error of the proposed method is about 8.96%, which is promising in these challenging data sets. Moreover, the proposed method is compared with cloth simulation filtering, multi-scale curvature classification, and gLiDAR methods and gives better results. Numéro de notice : A2022-811 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00084R2 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.14358/PERS.21-00084R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101971
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 9 (September 2022) . - pp 583 - 591[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022091 SL Revue Centre de documentation Revues en salle Disponible UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)
[article]
Titre : UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment Type de document : Article/Communication Auteurs : Katerina Trepekli, Auteur ; Thomas Balstrøm, Auteur ; Thomas Friborg, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 423 - 451 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] antenne GNSS
[Termes IGN] centrale inertielle
[Termes IGN] faisceau laser
[Termes IGN] Ghana
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] risque naturel
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular Network
[Termes IGN] zone urbaineRésumé : (auteur) In this study, we present the first findings of the potential utility of miniaturized light and detection ranging (LiDAR) scanners mounted on unmanned aerial vehicles (UAVs) for improving urban flood modelling and assessments at the local scale. This is done by generating ultra-high spatial resolution digital terrain models (DTMs) featuring buildings and urban microtopographic structures that may affect floodwater pathways (DTMbs). The accuracy and level of detail of the flooded areas, simulated by a hydrologic screening model (Arc-Malstrøm), were vastly improved when DTMbs of 0.3 m resolution representing three urban sites surveyed by a UAV-LiDAR in Accra, Ghana, were used to supplement a 10 m resolution DTM covering the region’s entire catchment area. The generation of DTMbs necessitated the effective classification of UAV-LiDAR point clouds using a morphological and a triangulated irregular network method for hilly and flat landscapes, respectively. The UAV-LiDAR data enabled the identification of archways, boundary walls and bridges that were critical when predicting precise run-off courses that could not be projected using the coarser DTM only. Variations in a stream’s geometry due to a one-year time gap between the satellite-based and UAV-LiDAR data sets were also observed. The application of the coarser DTM produced an overestimate of water flows equal to 15% for sloping terrain and up to 62.5% for flat areas when compared to the respective run-offs simulated from the DTMbs. The application of UAV-LiDAR may enhance the effectiveness of urban planning by projecting precisely the locations, extents and run-offs of flooded areas in dynamic urban settings. Numéro de notice : A2022-704 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s11069-022-05308-9 Date de publication en ligne : 22/03/2022 En ligne : https://doi.org/10.1007/s11069-022-05308-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101567
in Natural Hazards > vol 113 n° 1 (August 2022) . - pp 423 - 451[article]Using vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkDetection of periodic displacements of shell structures with edges using spline surfaces, meshes and point clouds / Grzegorz Lenda in Reports on geodesy and geoinformatics, vol 112 n° 1 (December 2021)PermalinkProgressive TIN densification with connection analysis for urban Lidar data / Tao Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)PermalinkApport de la photogrammétrie dans la documentation et le suivi d’une tranchée archéologique / Iris Lucas (2021)PermalinkAdjusting the regular network of squares resolution to the digital terrain model surface shape / Dariusz Gościewski in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)PermalinkComparison of two methods for multiresolution terrain modelling in GIS / Turkay Gokgoz in Geocarto international, vol 35 n° 12 ([01/09/2020])PermalinkSmall‐area patch‐merging method accounting for both local constraints and the overall area balance / Chengming Li in Transactions in GIS, Vol 24 n° 4 (August 2020)PermalinkAutomated conflation of digital elevation model with reference hydrographic lines / Timofey Samsonov in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)PermalinkModelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)PermalinkAutomatic determination of stream networks from DEMs by using road network data to locate culverts / Ville Mäkinen in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)Permalink