Descripteur
Documents disponibles dans cette catégorie (196)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geographic named entity recognition by employing natural language processing and an improved BERT model / Liufeng Tao in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
[article]
Titre : Geographic named entity recognition by employing natural language processing and an improved BERT model Type de document : Article/Communication Auteurs : Liufeng Tao, Auteur ; Zhong Xie, Auteur ; Dexin Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Chine
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données publiques
[Termes IGN] jeu de données
[Termes IGN] reconnaissance de caractères
[Termes IGN] reconnaissance de noms
[Termes IGN] test de performance
[Termes IGN] toponyme
[Termes IGN] traitement du langage naturelRésumé : (auteur) Toponym recognition, or the challenge of detecting place names that have a similar referent, is involved in a number of activities connected to geographical information retrieval and geographical information sciences. This research focuses on recognizing Chinese toponyms from social media communications. While broad named entity recognition methods are frequently used to locate places, their accuracy is hampered by the many linguistic abnormalities seen in social media posts, such as informal sentence constructions, name abbreviations, and misspellings. In this study, we describe a Chinese toponym identification model based on a hybrid neural network that was created with these linguistic inconsistencies in mind. Our method adds a number of improvements to a standard bidirectional recurrent neural network model to help with location detection in social media messages. We demonstrate the results of a wide-ranging evaluation of the performance of different supervised machine learning methods, which have the natural advantage of avoiding human design features. A set of controlled experiments with four test datasets (one constructed and three public datasets) demonstrates the performance of supervised machine learning that can achieve good results on the task, significantly outperforming seven baseline models. Numéro de notice : A2022-945 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120598 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.3390/ijgi11120598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102178
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 598[article]Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications / Wenwen Li in Computers, Environment and Urban Systems, vol 98 (December 2022)
[article]
Titre : Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Sizhe Wang, Auteur ; Sheng wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101884 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] base de données relationnelles
[Termes IGN] entrepôt de données
[Termes IGN] ontologie
[Termes IGN] RDF
[Termes IGN] référentiel sémantique
[Termes IGN] requête spatiale
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] stockage de données
[Termes IGN] test de performance
[Termes IGN] web sémantiqueRésumé : (auteur) Knowledge graph has become a cutting-edge technology for linking and integrating heterogeneous, cross-domain datasets to address critical scientific questions. As big data has become prevalent in today's scientific analysis, semantic data repositories that can store and manage large knowledge graph data have become critical in successfully deploying spatially explicit knowledge graph applications. This paper provides a comprehensive evaluation of the popular semantic data repositories and their computational performance in managing and providing semantic support for spatial queries. There are three types of semantic data repositories: (1) triple store solutions (RDF4j, Fuseki, GraphDB, Virtuoso), (2) property graph databases (Neo4j), and (3) an Ontology-Based Data Access (OBDA) approach (Ontop). Experiments were conducted to compare each repository's efficiency (e.g., query response time) in handling geometric, topological, and spatial-semantic related queries. The results show that Virtuoso achieves the overall best performance in both non-spatial and spatial-semantic queries. The OBDA solution, Ontop, has the second-best query performance in spatial and complex queries and the best storage efficiency, requiring the least data-to-RDF conversion efforts. Other triple store solutions suffer from various issues that cause performance bottlenecks in handling spatial queries, such as inefficient memory management and lack of proper query optimization. Numéro de notice : A2022-720 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101884 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101884 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101654
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101884[article]Performance analysis of low-cost GNSS stations for structural health monitoring of civil engineering structures / Nicolas Manzini in Structure and Infrastructure Engineering, vol 18 n° 5 ([01/05/2022])
[article]
Titre : Performance analysis of low-cost GNSS stations for structural health monitoring of civil engineering structures Type de document : Article/Communication Auteurs : Nicolas Manzini, Auteur ; André Orcesi, Auteur ; Christian Thom , Auteur ; Marc-Antoine Brossault, Auteur ; Serge Botton , Auteur ; Miguel Ortiz, Auteur ; John Dumoulin, Auteur Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 595 - 611 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] auscultation d'ouvrage
[Termes IGN] déformation d'édifice
[Termes IGN] effet thermique
[Termes IGN] pont
[Termes IGN] RTKLIB
[Termes IGN] surveillance d'ouvrage
[Termes IGN] test de performance
[Termes IGN] topométrie de précisionRésumé : (auteur) Global Navigation Satellite Systems (GNSS) have been used in various monitoring applications for the past two decades, as one of the very few options to provide absolute positions in a global reference frame. However, high performance GNSS stations are expensive, and sometimes may be impractical because of their size, power consumption or software requirements. Thus, the use of low-cost GNSS stations for structural health monitoring (SHM) has gained increasing attention. This paper presents a detailed experimental assessment of multiple combinations of GNSS receivers and antennas, and highlights an optimal cost-efficient solution for monitoring applications. Several sets of processing parameters and constraints are also evaluated using open source RTKLib software. The performance of the proposed solution is evaluated through two experimental dynamic scenarios, proving its ability to track quick displacements down to 4 mm and oscillations of 1 cm with a frequency up to 0.25 Hz with a 1 Hz receiver. Finally, a two-week dataset acquired from on a network of low-cost GNSS stations deployed on a suspended bridge is used to validate on-site performance. Results show good agreement between GNSS time series, traditional displacement sensors, and numerical simulations made using an operational mechanical model of the bridge, highlighting the potential of such low-cost solutions for structural health monitoring applications. Numéro de notice : A2021-170 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15732479.2020.1849320 Date de publication en ligne : 30/11/2020 En ligne : https://doi.org/10.1080/15732479.2020.1849320 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97105
in Structure and Infrastructure Engineering > vol 18 n° 5 [01/05/2022] . - pp 595 - 611[article]
Titre : AlpineBends – A benchmark for deep learning-based generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Editeur : International Cartographic Association ICA - Association cartographique internationale ACI Année de publication : 2022 Collection : Abstracts of the ICA num. 4 Projets : 1-Pas de projet / Conférence : ICA 2021, 24th ICA Workshop on Map Generalisation and Multiple Representation 13/12/2021 13/12/2021 Florence Italie OA Proceedings Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] données maillées
[Termes IGN] objet géographique
[Termes IGN] test de performance
[Vedettes matières IGN] GénéralisationRésumé : (auteur) [début] Raster-based map generalization is nowadays anecdotal, as most generalization operations are performed using vector data. Vectors describe the shape of each object in the map using a set of coordinates; thus, the object delimitation is directly accessible, and the topology and distance-based relations are easy to compute. On the contrary, rasters represent a map as an image, a grid of pixel covers the target area, and each pixel is characterised by a value. This representation does not explicitly model the boundary/shape of geographic objects and the relations between them. However, the emergence of the image-based deep learning techniques has shown an ability to process images of geographic information. The question of their adaptation for map generalization is a trendy subject: road (Courtial et al. 2020), building (Feng et al. 2019) and coastline (Du et al. 2021) generalization have been explored in recent years. Common methods for evaluating these techniques seems to be necessary for the comparison and development of this field. Numéro de notice : C2021-067 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/ica-abs-4-1-2022 Date de publication en ligne : 14/01/2022 En ligne : https://doi.org/10.5194/ica-abs-4-1-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99535
Titre : BasqueRoads: a benchmark for road network selection Type de document : Article/Communication Auteurs : Guillaume Touya , Auteur ; Azelle Courtial , Auteur Editeur : International Cartographic Association ICA - Association cartographique internationale ACI Année de publication : 2022 Collection : Abstracts of the ICA num. 4 Projets : LostInZoom / Touya, Guillaume Conférence : ICA 2021, 24th ICA Workshop on Map Generalisation and Multiple Representation 13/12/2021 13/12/2021 Florence Italie OA Proceedings Note générale : bibliographie
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101003012).Langues : Anglais (eng) Descripteur : [Termes IGN] objet géographique
[Termes IGN] réseau routier
[Termes IGN] simplification de contour
[Termes IGN] test de performance
[Vedettes matières IGN] GénéralisationRésumé : (auteur) [début] Road network selection is one of the major issues of map generalisation, as new papers are proposed every year since the first attempts of automation in the 1990’s (Thomson & Richardson, 1995). New methods are regularly proposed because selecting roads for maps at smaller scales is a complex problem. Roads are at the same time present in maps to enable car navigation tasks, and because they are structuring elements that reveal the nature of the landscape (urban, rural, mountainous…). So road selection is not only about retaining the most important roads of the network, but the preservation of topology and connectivity is essential, as well as the preservation, or the typification of road patterns (e.g. a ring road), and the preservation of local density differences (between urban and rural areas for instance). It is rare to see comparisons of road selection techniques in the literature, because of the lack of open source in map generalisation, but also because of the lack of a common dataset to benchmark these techniques; new propositions on road selection are most of the time tied to their own dataset and use case. This is why we think that this BasqueRoads dataset could be useful to advance on this topic of road network selection. Numéro de notice : C2021-066 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/ica-abs-4-5-2022 Date de publication en ligne : 14/01/2022 En ligne : https://doi.org/10.5194/ica-abs-4-5-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99536 Connecting images through sources: Exploring low-data, heterogeneous instance retrieval / Dimitri Gominski in Remote sensing, vol 13 n° 16 (August-2 2021)PermalinkPermalinkÉvaluation et spatialisation du potentiel offert par les moyens d'alerte centrés sur la localisation des individus / Esteban Bopp (2021)PermalinkComparative usability of an augmented reality sandtable and 3D GIS for education / Antoni B. Moore in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)PermalinkStatistical assessment of cartographic product from photogrammetry and fixed-wing UAV acquisition / Ademir Marques Junior in European journal of remote sensing, vol 53 n° 1 (2020)PermalinkA restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images / Xiaohui Ding in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)PermalinkPerspective switch and spatial knowledge acquisition: effects of age, mental rotation ability and visuospatial memory capacity on route learning in virtual environments with different levels of realism / Ismini E. Lokka in Cartography and Geographic Information Science, Vol 47 n° 1 (January 2020)PermalinkComparison of filtering algorithms used for DTM production from airborne lidar data: a case study in Bergama, Turkey / Baris Suleymanoglu in Geodetski vestnik, vol 63 n° 3 (September - November 2019)PermalinkLearning and adapting robust features for satellite image segmentation on heterogeneous data sets / Sina Ghassemi in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)PermalinkPerformance analysis of GLONASS integration with GPS vectorised receiver in urban canyon positioning / Amir Tabatabaei in Survey review, vol 51 n° 368 (September 2019)Permalink