Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > théorie des variétés > variété
variété |
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Titre : Function bases on Manifolds Titre original : Bases de fonctions sur les variétés Type de document : Thèse/HDR Auteurs : Bruno Vallet , Auteur Editeur : Nancy : Université de Nancy Année de publication : 2008 Autre Editeur : Nancy [France] : Institut National Polytechnique de Lorraine Importance : 187 p. Format : 21 x 30 cm Note générale : bibliographie
thesis presented and defended for the obtention of the doctorat de lInstitut National Polytechnique de Lorraine, computer scienceLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse numérique
[Termes IGN] espace de Hilbert
[Termes IGN] géométrie différentielle
[Termes IGN] méthode des éléments finis
[Termes IGN] théorie des variétés
[Termes IGN] topologie
[Termes IGN] variétéIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les bases de fonctions sont des outils indispensables de la géométrie numérique puisqu’ils permettent de représenter des fonctions comme des vecteurs, c’est à dire d’appliquer les outils de l’algèbre linéaire à l’analyse fonctionnelle. Dans cette thèse, nous présentons plusieurs constructions de bases de fonctions sur des surfaces pour la géométrie numérique. Nous commençons par présenter les bases de fonctions usuelles des éléments finis et du calcul extérieur discret, leur théorie et leurs limites. Nous étudions ensuite le Laplacien et sa discrétisation, ce qui nous permettra de construire une base de fonctions particulière : les fonctions propres de l’opérateur de Laplace-Beltrami, ou harmoniques variétés. Celles-ci permettent de généraliser la transformée de Fourier et le filtrage spectral aux fonctions définies sur des surfaces. Nous présentons ensuite des applications de cette base de fonction à la géométrie numérique. En particulier, nous montrons qu’une fois calculée, cette base de fonction permet de filtrer la géométrie en temps interactif. Pour pouvoir définir des bases de fonctions de façon plus indépendante du maillage de la surface, nous nous intéressons ensuite aux paramétrisations globales, et en particulier aux champs de directions à symétries qui permettent de les définir. Ainsi, dans la dernière partie, nous étudions ces champs de directions à symétries, et en particulier leur géométrie et leur topologie. Nous donnons alors des outils pour les construire, les manipuler et les visualiser. Numéro de notice : 19930 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : informatique : Nancy : 2008 Organisme de stage : ALICE (INRIA) nature-HAL : Thèse DOI : sans En ligne : https://tel.hal.science/tel-00311743/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86243 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 19930-01 K317 Livre LASTIG Dépôt en unité Exclu du prêt Introduction à l'analyse non linéaire sur les variétés / Emmanuel Hebey (1997)
Titre : Introduction à l'analyse non linéaire sur les variétés Type de document : Guide/Manuel Auteurs : Emmanuel Hebey, Auteur Editeur : Paris : Diderot éditeur Année de publication : 1997 Collection : Fondations Importance : 402 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-2-84134-031-6 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse mathématique
[Termes IGN] calcul tensoriel
[Termes IGN] courbe de Gauss
[Termes IGN] courbure
[Termes IGN] géométrie de Riemann
[Termes IGN] géométrie différentielle
[Termes IGN] théorie des variétés
[Termes IGN] topologie
[Termes IGN] variété
[Termes IGN] variété différentielleNote de contenu : 1 Éléments de géométrie différentielle
1.1 Variétés topologiques et variétés différentiables
1.1.1 Variétés topologiques
1.1.2 Variétés différentiables
1.1.3 Des exemples
1.2 Applications différentiables entre variétés
1.2.1 Premières définitions
1.2.2 Immersions Submersions Plongements
1.2.3 Partitions de l'unité
1.3 Sous variétés
1.4 Existence et unicité des structures lisses
1.5 L'espace tangent
1.5.1 Définition et premières propriétés
1.5.2 Le fibré tangent
1.5.3 L'application linéaire tangente
1.5.4 Retour rapide aux sous variétés et produit de variétés
1.5.5 Champs de vecteurs et crochet
1.6 Le fibré co-tangent
1.7 L'algèbre des formes extérieures
1.8 Tenseurs et champs de tenseurs
1.8.1 Éléments de calcul tensoriel
1.8.2 Le fibré vectoriel 0 (M)
1.9 Connexions linéaires
1.9.1 Premières définitions
1.9.2 Torsion et courbure
1.9.3 Extension aux champs de tenseurs
1.9.4 Les identités de Bianchi
1.10 Les variétés fibrées vectorielles
1.11 Intégration sur une variété orientée
1.11.1 Variétés orientables
1.11.2 Intégration des nformes
1.11.3 Variétés à bord et formule de Stokes
2 Variétés Riemanniennes et géodésiques
2.1 Variétés Riemanniennes
2.1.1 Définition et premières propriétés
2.1.2 La connexion de Levi Civita
2.1.3 Courbure de Riemann, courbure de Ricci, et courbure scalaire
2.1.4 La courbure sectionnelle
2.1.5 Produit de variétés Riemanniennes
2.2 Cartes normales
2.3 Géodésiques et application exponentielle
2.3.1 Définition des géodésiques
2.3.2 L'application exponentielle
2.3.3 Lemme de Gauss et coordonnées Riemanniennes polaires
2.3.4 Voisinages convexes
2.3.5 Le théorème de Hopf-Rinow
2.3.6 Champs de Jacobi
2.3.7 Énergie d'un chemin et géodésiques
2.3.8 Variations de l'énergie et de la longueur d'un arc
2.3.9 Cutlocus et rayon d'injectivité
2.4 Application exponentielle et courbure
3 Courbure et topologie
3.1 Le théorème de Myers
3.2 Isométries Riemanniennes
3.2.1 Le théorème de Myers-Steenrod
3.2.2 Isométries, courbures, et géodésiques
3.2.3 Le théorème de Nash
3.2.4 Le groupe Isomg (M)
3.3 Revêtements et revêtements Riemanniens
3.4 Le théorème de Cartan-Hadamard
3.5 Le théorème de Cheeger-Gromoll
3.6 Les différentes courbures d'une variété Riemannienne
3.6.1 Décomposition orthogonale dans l'espace des courbures
3.6.2 Variétés d'Einstein
3.6.3 Variétés conformément plates
3.6.4 Variétés à courbure sectionnelle constante
3.6.5 Des exemples
3.6.6 Sur le revêtement universel des variétés à courbure sectionnelle constante
3.7 Le théorème de Bieberbach
3.8 Produit de deux variétés conformément plates
3.9 Rayon d'injectivité et théorème de la sphère 1/4pincée
3.9.1 Estimées sur le rayon d'injectivité
3.9.2 Le théorème de la sphère 1/4pincée
4 Intégrale Riemannienne et théorème de Gauss-Bonnet
4.1 Intégration sur une variété Riemannienne
4.1.1 Définition et premiers résultats
4.1.2 Retour au cutlocus
4.1.3 Intégrale Riemannienne et variétés orientées
4.2 Codifférentielle, laplacien, et opérateur adjoint
4.3 Intégration par parties
4.4 Théorème de Gauss-Bonnet
4.4.1 Théorie de de Rham
4.4.2 Caractéristique d'Euler-Poincaré et théorème de Gauss-Bonnet
4.4.3 Une application simple
4.5 La méthode de Bochner
4.6 Variétés compactes conformément plates de dimension 4
4.7 Étude de la courbure de Ricci dans une classe conforme
5 Éléments d'analyse sur les variétés
5.1 Espaces de Sobolev sur les variétés
5.1.1 Quelques rappels
5.1.2 Définition et premières propriétés
5.1.3 Problèmes de densité
5.2 Théorème de Sobolev Première partie
5.2.1 Le cas de l'espace euclidien
5.2.2 Le cas des variétés
5.3 Meilleures constantes dans les inégalités de Sobolev
5.3.1 Le cas de l'espace euclidien
5.3.2 Le cas des variétés
5.4 Théorème de Sobolev Seconde partie
5.5 Inclusions compactes et théorème de Rellich-Kondrakov
5.6 Une remarque sur les variétés compactes à bord
5.7 Différents résultats d'analyse
5.7.1 Principe du maximum
5.7.2 Solutions faibles et régularité
5.7.3 Le théorème des multiplicateurs de Lagrange
5.8 Valeurs propres du laplacien sur une variété compacte
5.9 Résolution de Ägu = f sur une variété compacte
5.10 Fonction de Green du laplacien sur une variété compacte
5.11 Inégalités de Poincaré et Sobolev-Poincaré
6 Le problème de Yamabe
6.1 Laplacien conforme et courbure scalaire
6.2 Le problème de Yamabe
6.2.1 L'approche variationnelle
6.2.2 L'invariant de Yamabe étudié plus en détail
6.2.3 Le théorème de la masse positive
6.2.4 Résolution du problème
6.3 Groupe d'isométries et groupe conforme
6.4 Autour du problème de Yamabe
6.4.1 Unicité et multiplicité pour le problème de Yamabe
6.4.2 Equivariance et conjecture de Lichnerowicz
7 Prescrire la courbure scalaire dans une classe conforme
7.1 Une introduction
7.2 La méthode variationnelle
7.3 Concentration et invariance par symétries
7.4 Sur et sous solutions
8 Le flot associé à la courbure de Ricci
8.1 Principes du maximum pour l'équation de la chaleur
8.2 Les équations d'évolution d'Hamilton
8.2.1 Existence en temps petit
8.2.2 Evolution des courbures
8.2.3 Convergence en grands temps
8.3 Variétés de dimensions 3 et 4
8.4 Pincement de la courbure concirculaireNuméro de notice : 66955 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Manuel de cours Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=61682 Variétés différentiables / G. De Rham (1973)
Titre : Variétés différentiables Type de document : Monographie Auteurs : G. De Rham, Auteur Editeur : Paris : Hermann Année de publication : 1973 Collection : Actualités scientifiques et industrielles num. 17 Importance : 198 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-2-7056-1222-1 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse numérique
[Termes IGN] variétéNuméro de notice : 52370 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Monographie Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=59337 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 52370-01 23.40 Livre Centre de documentation Mathématiques Disponible