Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > triangulation (topologie)
triangulation (topologie) |
Documents disponibles dans cette catégorie (228)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Integrating topographic knowledge into point cloud simplification for terrain modelling / Jun Chen in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Integrating topographic knowledge into point cloud simplification for terrain modelling Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Liyang Xiong, Auteur ; Bowen Yin, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 988 - 1008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données topographiques
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain models are widely used to depict the shape of the Earth’s surface. With the development of photogrammetric methods, point cloud data have become one of the most popular data sources for terrain modelling. However, the obtained point clouds are of high density, which often increases redundancy rather than improving accuracy. Therefore, point cloud simplification should be a core component of terrain modelling. This paper proposes a point cloud simplification method by integrating topographic knowledge into terrain modelling (TKPCS). The method contains two steps: (1) topographic knowledge recognition and construction and (2) point cloud simplification using this topographic knowledge for terrain modelling. The proposed approach is benchmarked against improved versions of existing methods to validate its capability and accuracy in digital elevation model construction and terrain derivative extraction. The results show that the simplified points of the TKPCS method can generate finer resolution terrain models with higher accuracy and greater information entropy. The good performance of the TKPCS method is also stable at different scales. This work endeavours to transform perceptive topographic knowledge into a process of point cloud simplification and can benefit future research related to terrain modelling. Numéro de notice : A2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2023.2180801 Date de publication en ligne : 28/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2180801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103138
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 988 - 1008[article]Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)
Titre : PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet , Auteur ; Marc Pierrot-Deseilligny , Auteur Editeur : Computer vision foundation CVF Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition workshops 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : pp 6526 - 6535 Note générale : bibliographie
voir aussi https://openaccess.thecvf.com/content/CVPR2023W/PCV/supplemental/Wu_PSMNet-FusionX3_LiDAR-Guided_Deep_CVPRW_2023_supplemental.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne à axe vertical
[Termes IGN] scène 3D
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Dense image matching (DIM) and LiDAR are two complementary techniques for recovering the 3D geometry of real scenes. While DIM provides dense surfaces, they are often noisy and contaminated with outliers. Conversely, LiDAR is more accurate and robust, but less dense and more expensive compared to DIM. In this work, we investigate learning-based methods to refine surfaces produced by photogrammetry with sparse LiDAR point clouds. Unlike the current state-of-the-art approaches in the computer vision community, our focus is on aerial acquisitions typical in photogrammetry. We propose a densification pipeline that adopts a PSMNet backbone with triangulated irregular network interpolation based expansion, feature enhancement in cost volume, and conditional cost volume normalization, i.e. PSMNet-FusionX3. Our method works better on low density and is less sensitive to distribution, demonstrating its effectiveness across a range of LiDAR point cloud densities and distributions, including analyses of dataset shifts. Furthermore, we have made both our aerial (image and disparity) dataset and code available for public use. Further information can be found at https://github.com/ whuwuteng/PSMNet-FusionX3. Numéro de notice : C2023-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication DOI : sans En ligne : https://openaccess.thecvf.com/content/CVPR2023W/PCV/papers/Wu_PSMNet-FusionX3_Li [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103277 Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules / Fubing Zhang in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
[article]
Titre : Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules Type de document : Article/Communication Auteurs : Fubing Zhang, Auteur ; Qun Sun, Auteur ; Jingzhen Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 609 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] effondrement (généralisation)
[Termes IGN] représentation multiple
[Termes IGN] rivière
[Termes IGN] segmentation
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Collapse is a common cartographic generalization operation in multi-scale representation and cascade updating of vector spatial data. During transformation from large- to small-scale, the dual-line river shows progressive collapse from narrow river segment to line. The demand for vector spatial data with various scales is increasing; however, research on the progressive collapse of dual-line rivers is lacking. Therefore, we proposed a progressive collapse method based on vector spatial data. First, based on the skeleton graph of the dual-line river, the narrow and normal river segments are preliminarily segmented by calculating the width of the river. Second, combined with the rules of cartographic generalization, the collapse and exaggeration priority strategies are formulated to determine the handling mode of the river segment. Finally, based on the two strategies, progressive collapse of dual-line rivers is realized by collapse and exaggeration of the river segment. Experimental results demonstrated that the progressive collapse results of the proposed method were scale-driven, and the collapse part had no burr and topology problems, whereas the remaining part was clearly visible. The proposed method can be better applied to progressive collapse of the dual-line river through qualitative and quantitative evaluation with another progressive collapse method. Numéro de notice : A2022-901 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120609 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.3390/ijgi11120609 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102285
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 609[article]Raster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Raster-based method for building selection in the multi-scale representation of two-dimensional maps Type de document : Article/Communication Auteurs : Yilang Shen, Auteur ; Tinghua Ai, Auteur ; Rong Zhao, Auteur Année de publication : 2022 Article en page(s) : pp 6494 - 6518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] densité du bâti
[Termes IGN] distribution spatiale
[Termes IGN] données matricielles
[Termes IGN] représentation cartographique 2D
[Termes IGN] représentation multiple
[Termes IGN] segmentation
[Termes IGN] superpixel
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) In the multi-scale representation of maps, a selection operation is usually applied to reduce the number of map elements and improve legibility while maintaining the original distribution characteristics. During the past few decades, many methods for vector building selection have been developed; however, pixel-based methods are relatively lacking. In this paper, a multiple-strategy method for raster building selection is proposed. In this method, to preserve the distribution range, a new homogeneous linear spectral clustering (HLSC) superpixel segmentation method is developed for the relatively homogeneous spatial division of building groups. Then, to preserve the relative distribution density, multi-level spatial division is performed according to the local number of buildings. Finally, to preserve the local geometric, attributive and geographical characteristics, four selection strategies, namely, the minimum centroid distance, minimum boundary distance, maximum area and considering geographical element strategies, are designed to generate selection results. To evaluate the proposed method, dispersed buildings in a suburban area are utilized to perform selection tasks. The experimental results indicate that the proposed method can effectively select dispersed irregular buildings at different levels of detail while maintaining the original distribution range and relative distribution density. In addition, the use of multiple selection strategies considering various geometric, attributive and geographical characteristics provides multiple options for cartography. Numéro de notice : A2022-727 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943007 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101673
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6494 - 6518[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)PermalinkA boundary-based ground-point filtering method for photogrammetric point-cloud data / Seyed Mohammad Ayazi in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)PermalinkUAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkA framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkCity3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)PermalinkA cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkUsing vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkPermalinkDetection of periodic displacements of shell structures with edges using spline surfaces, meshes and point clouds / Grzegorz Lenda in Reports on geodesy and geoinformatics, vol 112 n° 1 (December 2021)PermalinkA typification method for linear building groups based on stroke simplification / Xiao Wang in Geocarto international, vol 36 n° 15 ([15/08/2021])Permalink