Détail de l'éditeur
Université de Rennes 1
localisé à :
Rennes
|
Documents disponibles chez cet éditeur (14)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Analyse haute résolution de la morphologie des paysages et des processus à partir de LiDAR aéroporté répété et simulation hydraulique / Thomas Bernard (2022)
Titre : Analyse haute résolution de la morphologie des paysages et des processus à partir de LiDAR aéroporté répété et simulation hydraulique Type de document : Thèse/HDR Auteurs : Thomas Bernard, Auteur ; Dimitri Lague, Directeur de thèse ; Philippe Davy, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2022 Importance : 253 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Spécialité Sciences de la Terre et de l’EnvironnementLangues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse du paysage
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] modèle hydrographique
[Termes IGN] Nouvelle-Zélande
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’objectif fondamental de la géomorphologie est l’identification et la caractérisation des processus façonnant les paysages. En fournissant une représentation 3D haute précision et haute densité des paysages, le LiDAR aéroporté a révolutionné notre capacité à extraire des informations sur la topographie fournissant ainsi de nouvelles opportunités pour l’identification et la compréhension des processus géomorphologiques. Ce potentiel reste sous-exploité dans de nombreuses problématiques en géomorphologie du fait de l’incapacité des méthodes d’analyse actuelles à exploiter la richesse d’information fournie par le LiDAR aéroporté. Cette thèse intègre les derniers développements sur la simulation hydraulique 2D et la détection de changements 3D afin d’améliorer les méthodes d’analyse pour (i) la description de la structure des paysages fluviaux et (ii) l’identification et l’analyse géométrique des glissements de terrain à haute résolution. Les principaux résultats montrent que la simulation hydraulique 2D permet la définition d’indicateurs hydro-géomorphiques prenant pleinement en compte la structure haute résolution des écoulements de surface. Ces indicateurs permettent une meilleure identification des connexions versants-rivières et la caractérisation de la géométrie hydraulique des chenaux. L’intégration de la détection de changement 3D permet d’exploiter la structure 3D des données LiDAR pour la création d’inventaires robustes, complets et objectifs des glissements de terrain. Cette approche permet une meilleure quantification du volume des glissements de terrain en comparaison des approches traditionnelles. Note de contenu : Introduction générale
1- Etat de l'Art et problématiques
2- Apports de la simulation hydraulique 2D dans l’analyse morphologique haute résolution des paysages
3- Détection semi-automatique et analyses géométriques des glissements de terrain à partir de LiDAR aéroporté répété
4- Approche méthodologique préliminaire pour l’analyse morphodynamique des paysages à la suite de perturbations exogènes par LiDAR aéroporté répété et simulation hydraulique 2D
5- Conclusions et perspectivesNuméro de notice : 24024 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences de la Terre et de l’Environnement : Rennes 1 : 2022 Organisme de stage : Géosciences DOI : sans En ligne : https://tel.hal.science/tel-03783246 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101820 Une généralisation de la méthode de partage des poids dans le cas où la base de sondage est continue / Philippe Brion (2022)
Titre : Une généralisation de la méthode de partage des poids dans le cas où la base de sondage est continue Type de document : Article/Communication Auteurs : Philippe Brion, Auteur ; Olivier Bouriaud , Auteur ; Guillaume Chauvet, Auteur Editeur : Rennes : Université de Rennes 1 Année de publication : 2022 Projets : 1-Pas de projet / Conférence : JMS 2022, 14es Journées de méthodologie statistique de l’Insee Paris France Note générale : bibliographie Langues : Français (fre) Descripteur : [Termes IGN] échantillonnage
[Termes IGN] estimateur
[Termes IGN] estimation statistique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] méthode de partage des poids
[Termes IGN] quantité continue
[Termes IGN] stratification
[Termes IGN] variance
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) La définition de l’unité statistique utilisée dans les enquêtes statistiques est une question difficile : les différents ”univers” enquêtés n’ont pas nécessairement une base de sondage directement utilisable, et il arrive que l’on utilise des unités à échantillonner d’une nature différente de celle des unités observées. La production d’estimations statistiques pose alors des problèmes méthodologiques complexes, qui peuvent être traités en utilisant la méthode dite du partage des poids, formalisée par Deville et Lavallée (2006). Cette méthode est basée sur les liens existant entre les deux populations : population échantillonnée et population observée. Cependant, les deux populations considérées dans cette approche sont des populations discrètes. Pour certains domaines d’étude, en particulier liés à des aspects environnementaux, la population échantillonnée est une population continue : c’est par exemple le cas des inventaires forestiers pour lesquels, fréquemment, les arbres enquêtés sont ceux situés sur des placettes dont les centres sont des points tirés de manière aléatoire dans une zone donnée. La production d’estimations statistiques à partir de l’échantillon d’arbres enquêtés pose alors des difficultés de méthode, ainsi que les calculs de variance associés. L’objet de ce papier est de procéder à une généralisation de la méthode de partage des poids au cas continu (population échantillonnée) – discret (population enquêtée), à partir de la formalisation proposée par Cordy en 1993 sur l’extension de l’estimateur de Horvitz-Thompson au tirage de points réalisé dans un univers continu. Numéro de notice : C2022-001 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans En ligne : http://www.jms-insee.fr/2022/S15_3_ACTE_BOURIAUD_BRION_JMS2022.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103348 Documents numériques
peut être téléchargé
Une généralisation de la méthode de partage ... - pdf éditeurAdobe Acrobat PDF
Titre : Robustness of visual SLAM techniques to light changing conditions : Influence of contrasted local features, multi-planar representations and multimodal image analysis Type de document : Thèse/HDR Auteurs : Xi Wang, Auteur ; Eric Marchand, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2022 Importance : 153 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Rennes 1, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] éclairage
[Termes IGN] estimation de pose
[Termes IGN] information sémantique
[Termes IGN] primitive géométrique
[Termes IGN] programmation linéaire
[Termes IGN] robotique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The SLAM (Simultaneous Localization And Mapping) technique concentrates on localizing and recovering the environment in a simultaneous way and is one of the core functionalities of many industrial products such as augmented reality, where the device poses should be tracked in real-time; autonomous driving, where one needs to localize the vehicle in a pre-generated map or unknown environment; and even modern filmmaking workflow, where the relative camera position and orientation are critical for post-processing or real-time prevising for directors and actors to visualise the visual effects on the stage. Multiple difficulties in different levels can influence the final performance of robot agents’s SLAM task, as the pipeline is long and complicated from the real world physics to the required information such as agent poses and 3-D map, which help us visualize colourful graphics scenes in AR devices or make hard decisions on the highway for autonomous driving. Many solutions are proposed for addressing each problem, respectively, with the means from classic statistic probability models to the modern data-driven deep neural network. However, the quest of improving the robot’s robustness under dynamic and complicated environments perisists and becomes more and more significant and active for nowadays robotics research. The need for improving the robustness of robot agents is imminent and regarded as one of most imperative factors for deploying robots ubiquitously in our daily life. Under this context, this thesis tries to address a small drop in the ocean of the problem of SLAM robustness, yet in a very systematic view: we try to break down the SLAM system into different and inter-influential modules. Then use the concept of "divide and conquer" for answering possible questions within each module and wishing to contribute to the community and help improve the robustness of SLAM systems under complicated conditions. With the above objectives, the contributions of the thesis are stated as follows for tackling the robustness problem from multiple angles: 1) From the image feature angle, we proposed a multiple layered image structure for improving the performance of traditional local image features under extreme conditions. Furthermore, an optimization method on linear searching and mutual information assisted convex optimization are designed for tuning the optimal parameters with the proposed structure; 2) From the geometric primitive angle, we proposed a relative pose estimation and SLAM framework under the multiple planar assumption, by keypoint feature-based and template tracker based methods, respectively. We tried to achieve better performance of mapping and tracking simultaneously with the help of a more general planar assumption. 3) From the angle of relocalization of the SLAM system, the idea is to recover the already passed locations of the robot agent for lowering the overall estimation error or when the robot is in lost status. We proposed a binary graph structure for embedding spatial information and heterogeneous data formats such as depth image, semantic information etc. The proposed method enables robotics SLAM systems to relocalize themselves with a higher success rate even under different lighting, weather and seasonal conditions. Note de contenu : 1- Introduction
2- Résumé
3- Background on visual SLAM techniques
4- Related work
5- Organisation
6- Multiple layers image
7- Multi-planar relative pose estimation via superpixel
8- TT-SLAM
9- Binary graph descriptor for robust relocalization on heterogeneous data
ConclusionNuméro de notice : 24074 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Rennes 1 : 2022 Organisme de stage : IRISA DOI : sans En ligne : https://www.theses.fr/2022REN1S022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102162
Titre : LiDAR-based point clouds registration for localization in indoor environments Type de document : Thèse/HDR Auteurs : Ketty Favre, Auteur ; Luce Morin, Directeur de thèse ; Eric Marchand, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2021 Importance : 146 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Spécialité Signal, Image, VisionLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Gauss-Newton
[Termes IGN] appariement d'images
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène intérieure
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis deals with the problem of registration of 3D point clouds in indoor environments. Registration methods are proposed to obtain a compromise between time and accuracy. First, GNMR-ICP, a multi-resolution algorithm which robustly minimizes the point-to-plane distance between two point clouds using a Gauss-Newton method. The multi-resolution is done using an octree. On the ASL benchmark dataset, GNMR-ICP gives more accurate results than its equivalent using the small angle approximation (81% success rate against 43%). Computation times in structured environments are reduced (up to a factor of 2). Next we present NAP-ICP, an algorithm based on plane matching. Planes are matched using a score function based on the characteristics of pairs of planes. An additional point-to-plane registration is performed to ensure maximum accuracy. NAP-ICP registers 100% of the interior scenes of the ASL dataset and is more accurate than the evaluated state-of-the-art functions and is able to close the loops of the LOOP’IN dataset. Finally, PAR-ICP, a plane-based method where the matching is performed using a Random Forest is presented. PAR-ICP registers 100% of the interior scenes of the ASL dataset and is able to close the loops of LOOP’IN, allowing to generate incremental maps. Note de contenu : Introduction
1- Background
2- State of the art
3- Datasets
4- Multi-resolution registration of 3D point clouds
5- Plane-based registration of 3D point clouds
6- Learning-based plane matching for planet-to-plane
ConclusionNuméro de notice : 28635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image, Vision : Rennes 1 : 2021 Organisme de stage : Institut d'Électronique et de Télécommunications DOI : sans En ligne : http://www.theses.fr/2021REN1S059 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99666
Titre : Multispectral object detection Type de document : Thèse/HDR Auteurs : Heng Zhang, Auteur ; Elisa Fromont, Directeur de thèse ; Sébastien Lefèvre, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2021 Importance : 114 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée en vue de l’obtention du grade de docteur en Informatique de l'Université de Rennes 1Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chambre de prise de vue thermique
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] efficacité
[Termes IGN] fusion de données multisource
[Termes IGN] image multibande
[Termes IGN] précision de la classification
[Termes IGN] qualité du modèle
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Only using RGB cameras for automatic outdoor scene analysis is challenging when, for example, facing insufficient illumination or adverse weather. To improve the recognition reliability, multispectral systems add additional cameras (e.g. infra-red) and perform object detection from multispectral data. Although multispectral scene analysis with deep learning has been shown to have a great potential, there are still many open research questions and it has not been widely deployed in industrial contexts. In this thesis, we investigated three main challenges about multispectral object detection: (1) the fast and accurate detection of objects of interest from images; (2) the dynamic and adaptive fusion of information from different modalities;(3) low-cost and low-energy multispectral object detection and the reduction of its manual annotation efforts. In terms of the first challenge, we first optimize the label assignment of the object detection training with a mutual guidance strategy between the classification and localization tasks; we then realize an efficient compression of object detection models including the teacher-student prediction disagreements in a feature-based knowledge distillation framework. With regard to the second challenge, three different multispectral feature fusion schemes are proposed to deal with the most difficult fusion cases where different cameras provide contradictory information. For the third challenge, a novel modality distillation framework is firstly presented to tackle the hardware and software constraints of current multispectral systems; then a multi-sensor-based active learning strategy is designed to reduce the labeling costs when constructing multispectral datasets. Note de contenu : 1. Introduction
1.1 Context and motivations
1.2 Thesis outline
2. Deep learning background
2.1 General object detection
2.2 Multispectral object detection
2.3 Knowledge distillation
2.4 Active learning
2.5 Datasets
3. Efficient object detection on embedded devices
3.1 Best practices for training object detection models
3.2 Mutual Guidance for Anchor Matching
3.3 Prediction Disagreement aware Feature Distillation
3.4 Experimental results
4. Information fusion from multispectral data
4.1 Multispectral Fusion with Cyclic Fuse-and-Refine
4.2 Progressive Spectral Fusion
4.3 Experimental results for CFR and PS-Fuse
4.4 Guided Attentive Feature Fusion
4.5 Experimental results for GAFF
5. Sensors and annotations: low cost multispectral data processing
5.1 Deep Active Learning from Multispectral Data
5.2 Low-cost Multispectral Scene Analysis with Modality Distillation
6. Conclusions and future works
6.1 Conclusions
6.2 Application to remote sensing data
6.3 PerspectivesNuméro de notice : 26765 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Rennes 1 : 2021 Organisme de stage : (IRISA) INRIA nature-HAL : Thèse DOI : sans Date de publication en ligne : 17/01/2022 En ligne : https://hal.science/tel-03530257/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99855 Evaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)PermalinkSimultaneous characterization of objects temperature and radiative properties through multispectral infrared thermography / Thibaud Toullier (2019)PermalinkDigital surface model generation over urban areas using high resolution satellite SAR imagery : tomographic techniques and their application to 3-Dchange monitoring / Martina Porfiri (2016)PermalinkIndoor navigation of mobile robots based on visual memory and image-based visual servoing / Suman Raj Bista (2016)PermalinkGestion de la complexité de scènes animées et interactives : contributions à la conception et à la représentation / Bernard Valton (1999)PermalinkSimulation d'erreurs dans une base de données géographique / Lucie Fouqué (1999)PermalinkDynamique de l'eau et télédétection, 1. Volume 1 / Robert Bariou (1994)PermalinkDynamique de l'eau et télédétection, 2. Volume 2 / Robert Bariou (1994)PermalinkLa prise en compte de l'environnement dans les études préalables / D. Demont (1981)Permalink