Descripteur
Documents disponibles dans cette catégorie (24)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)
[article]
Titre : Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS Type de document : Article/Communication Auteurs : Yegane Khosravi, Auteur ; Farhad Hosseinali, Auteur ; Mostafa Adresi, Auteur Année de publication : 2022 Article en page(s) : pp 412 - 431 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse de groupement
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par nuées dynamiques
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] distance de Manhattan
[Termes IGN] estimation par noyau
[Termes IGN] Iran
[Termes IGN] méthode statistique
[Termes IGN] pente
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] système d'information géographiqueRésumé : (auteur) Road accidents are among the most critical causes of fatality, personal injuries, and financial damage worldwide. Identifying accident hotspots and the causes of accidents and improving the condition of these hotspots is an economical way to improve road traffic safety. In this study, to identify the accident hotspots of “Dehbala” road located in Yazd province-Iran, statistical and non-statistical clustering methods were used. First, the weighting of the criteria was performed by an expert using the AHP method. Hence, the spatial correlation of slope and curvature was calculated by Global Moran’I. Anselin Local Moran index and Getis-Ord Gi* and Kernel Density Estimation were used to identify accident hotspots based on accident location due to the density of points. As a result, four accident hotspots were obtained by the Anselin Local Moran index, three accident hotspots by Getis-Ord Gi*and one accident-prone area were obtained by Kernel Density Estimation method. Three algorithms, k-means, k-medoids, and DBSCAN, were used to identify accident-prone areas or points using non-statistical methods. The dense cluster of each method was considered as an accident-prone cluster. Then the results of statistical and non- statistical methods were intersected with each other and the final accident-prone area was obtained. This study revealed the effect of geometric charcateristics of the road (slope and curvature) on the occurance of accidents. Numéro de notice : A2022-781 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.15292/geodetski-vestnik.2022.03.412-431 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.15292/geodetski-vestnik.2022.03.412-431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101864
in Geodetski vestnik > vol 66 n° 3 (September - November 2022) . - pp 412 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022031 RAB Revue Centre de documentation En réserve L003 Disponible A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway Type de document : Article/Communication Auteurs : Reza Sanayeia, Auteur ; Alireza Vafaeinejad, Auteur ; Jalal Karami, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4141 - 4157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] autocorrélation
[Termes IGN] autoroute
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Téhéran
[Termes IGN] transformation en ondelettesRésumé : (auteur) The aim of this study is to develop a model to predict temporal daily collision by integrating of Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms. As a case study, the integrated model was tested on 1097 daily traffic collisions data of Karaj-Qazvin freeway from 2009 to 2013 and the results were compared with the conventional ANN prediction model. In this method, initially, the raw collision data were analyzed, normalized, and classified via Geographical Information System (GIS). Partial Autocorrelation Function (PACF) was also utilized to evaluate the temporal autocorrelation for consecutive existing daily data. The results of this study showed that the proposed integrated DWT-ANN method provided higher predictive accuracy in daily traffic collision than ANN model by increasing coefficient of determination (R2) from 0.66 to 0.82. Numéro de notice : A2022-650 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1871669 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/10106049.2021.1871669 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101472
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4141 - 4157[article]GIS-based assessment of long-term traffic accidents using spatiotemporal and empirical Bayes analysis in Turkey / Saffet Erdoğan in Applied geomatics, vol 14 n° 2 (June 2022)
[article]
Titre : GIS-based assessment of long-term traffic accidents using spatiotemporal and empirical Bayes analysis in Turkey Type de document : Article/Communication Auteurs : Saffet Erdoğan, Auteur ; Mehmet Ali Dereli, Auteur ; Halil İbrahim Şenol, Auteur Année de publication : 2022 Article en page(s) : pp 147 - 162 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse de groupement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] données statistiques
[Termes IGN] sécurité routière
[Termes IGN] système d'information géographique
[Termes IGN] théorème de Bayes
[Termes IGN] trafic routier
[Termes IGN] TurquieRésumé : (auteur) The number of traffic fatalities continues to rise steadily throughout the world. In 2016, it reached 1.35 million. The spatiotemporal analysis makes a big contribution when used with spatial and statistical analysis together in terms of the understanding of the change. This study focuses on spatiotemporal fluctuations in traffic accident hotspots to gain useful insights into traffic safety in Turkey in 2004–2017 period. For this purpose, 372,800 accident records are arranged on a GIS platform. The areas that lack traffic safety and require more attention were determined using spatial, temporal, and empirical Bayesian analysis. Although similar results were detected with spatiotemporal and empiric Bayes analysis, spatiotemporal analysis was used to understand where traffic accidents clustering, and how the trends of traffic accidents change whether are increasing or decreasing. As a result of the analysis, an increasing trend has been found in many locations in Turkey from 2004 to 2017. Numéro de notice : A2022-461 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-022-00419-1 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1007/s12518-022-00419-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100788
in Applied geomatics > vol 14 n° 2 (June 2022) . - pp 147 - 162[article]Road traffic crashes and emergency response optimization: a geo-spatial analysis using closest facility and location-allocation methods / Sulaiman Yunus in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Road traffic crashes and emergency response optimization: a geo-spatial analysis using closest facility and location-allocation methods Type de document : Article/Communication Auteurs : Sulaiman Yunus, Auteur ; Ishaq A. Abdulkarim, Auteur Année de publication : 2022 Article en page(s) : pp 1535 - 1555 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] allocation
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] distribution spatiale
[Termes IGN] données localisées
[Termes IGN] équipement sanitaire
[Termes IGN] itinéraire
[Termes IGN] Nigéria
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] secours d'urgenceRésumé : (auteur) Increased occurrence of road traffic crashes in Kano metropolis has resulted in a steady loss of lives, injuries, and increased people's risk exposure. This study looked into the emergency response to road traffic crashes in Kano, with a view to improving efficiency by developing linkages and synergy between Emergency Healthcare Facilities (EHCF), ambulances, and crash hotspots. The geographical location and attributes of the major EHCF, crash hotspots along highway intersections, and the two existent ambulances at the Kano State Fire Service (KSFS) and Federal Road Safety Corp head offices (FRSC) were obtained using GPS surveying. Road traffic network data (vector format) was digitized from satellite image, from which two major road classes (highways and minor roads) were identified, as well as their respective speed limits. The length and speed constraints were used to calculate time distances. Nearest Neighbor and Network (closest facility, shortest route, and location-allocation) analyses were carried out. Location-allocation analysis was to determine based on defined criteria the best locations to allocate EHCF or ambulance for optimum coverage. The results demonstrated that EHCF, ambulances, and crash places have different distribution patterns with almost no linkages. Closest ambulance facility analysis revealed the FRSC ambulance takes 9.41 minutes to arrive to crash spot 18 (Maiduguri Road, following NNPC) and 7.52 minutes to arrive at AKTH, the nearest EHCF. Comparatively, getting to Court road incident scene (spot 16) and IRPH as the closest EHCF takes about 3 times the time it takes to get to spot 18 and 4 times the time it takes to get to AKTH. This means that practically almost all victims in the city suffocate before reaching to the hospital. This signifies that, in cases of demand for CPR at the incident scene, there are higher likelihood of dying as it is expected to be provided within the first four minutes after the crash. Based on a maximum of 4 minutes impedance cutoff from all directions towards the occurrences areas, location-allocation analysis found eight new locations to maximize coverage and improve efficiency. It is concluded that current road traffic crash emergency response system has been determined to be ineffective. As a result, more ambulances should be strategically placed to improve emergency response times. Numéro de notice : A2022-884 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2086829 Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1080/19475705.2022.2086829 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102209
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 1535 - 1555[article]Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam / Khanh Giang Le in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
[article]
Titre : Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam Type de document : Article/Communication Auteurs : Khanh Giang Le, Auteur ; Pei Liu, Auteur ; Liang-Tay Lin, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] base de données spatiotemporelles
[Termes IGN] données météorologiques
[Termes IGN] estimation par noyau
[Termes IGN] Hanoï
[Termes IGN] indice de risque
[Termes IGN] nuit
[Termes IGN] système d'information géographique
[Termes IGN] variation diurne
[Termes IGN] variation saisonnièreRésumé : (auteur) This study applied GIS-based statistical analytic techniques to investigate the influence of accident Severity Index (SI) on temporal-spatial patterns of accident hotspots related to the specific time intervals of day and seasons. Road Traffic Accident (RTA) data in 3 years (2015 − 2017) in Hanoi, Vietnam were used to analyze and test this approach. Firstly, the RTA data were divided into four seasons in accordance with Hanoi’s weather conditions and the time intervals such as the daytime, nighttime, or peak hours. Then, the Kernel Density Estimation (KDE) method was applied to analyze hotspots according to the time intervals and seasons. Finally, the results were presented by using the comap technique. This study considered both analyses with and without SI. The accident SI measures the seriousness of an accident. The approach method is to give higher weights to the more serious accidents, but not with the extremely high values calculated on a direct rate to the accident expenditures. The results showed that both analyses determined the relatively similar hotspots, but the rankings of some hotspots were quite different due to the integration of SI. It is better to take into account SI in determining RTA hotspots because the gained results are more precise and the rankings of hotspots are more accurate. From there, the traffic authorities can easily understand the causes behind each accident and provide reasonable solutions to solve the most dangerous hotspots in case of limited budget and resources appropriately. This is also the first study about this issue in Vietnam, so the contribution of the article will help the traffic authorities easily solve this problem not only in Hanoi but also in other cities. Numéro de notice : A2020-317 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2019.1683437 Date de publication en ligne : 02/12/2019 En ligne : https://doi.org/10.1080/10095020.2019.1683437 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95176
in Geo-spatial Information Science > vol 23 n° 2 (June 2020) . - pp 153 - 164[article]Prediction of traffic accidents hot spots using fuzzy logic and GIS / Aslam Al-Omari in Applied geomatics, vol 12 n° 2 (June 2020)PermalinkA space-time varying graph for modelling places and events in a network / Ikechukwu Maduako in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)PermalinkRoad safety evaluation through automatic extraction of road horizontal alignments from Mobile LiDAR System and inductive reasoning based on a decision tree / José Antonio Martin-Jimenez in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)PermalinkPermalinkFrom taxonomies to ontologies: formalizing generalization knowledge for on-demand mapping / Nicholas Gould in Cartography and Geographic Information Science, Vol 43 n° 3 (June 2016)PermalinkSpatial analysis of geometric design consistency and road sight distance / Maria Castro in International journal of geographical information science IJGIS, vol 29 n° 12 (December 2015)PermalinkCollaborative web-GIS design: a case study for road risk analysis and monitoring / Francesco Pirotti in Transactions in GIS, vol 15 n° 2 (April 2011)PermalinkMobilités urbaines et risques des transports / Arnaud Banos (2010)PermalinkMulti-scale spatiotemporal analyses of moose-vehicle collisions: a case study in northern Vermont / Giorgos Mountrakis in International journal of geographical information science IJGIS, vol 23 n°11-12 (november 2009)PermalinkStrong road safety policy / E. Donkers in Geoinformatics, vol 11 n° 6 (01/09/2008)Permalink