Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse infrapixellaire
analyse infrapixellaire |
Documents disponibles dans cette catégorie (31)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
[article]
Titre : Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network Type de document : Article/Communication Auteurs : Da He, Auteur ; Qian Shi, Auteur ; Xiaoping Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102667 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage profond
[Termes IGN] arbre hors forêt
[Termes IGN] arbre urbain
[Termes IGN] base de données localisées
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] métropole
[Termes IGN] Pékin (Chine)
[Termes IGN] prise en compte du contexte
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Contrast to the global forest, few trees live in cities but contribute significantly to urban environment and human health. However, the classical satellite-derived land cover/forest cover products with limited resolution are not fine enough for the identification of urban tree, which is usually appeared in small size and intersected with infrastructure. To relieve the dilemma, this study developed an urban tree specific sub-pixel mapping (SPM) architecture with deep learning approach, which aimed to generate 2m fine-scale urban tree cover product from 10 m Sentinel-2 images for large-scale area of 34 metropolises in China. The proposed approach has remarkable reconstruction ability for delineating the contextual characteristic of the urban tree patterns, and reliable generalization ability to large-scale area. In addition, this study creates a large-volume urban tree cover dataset (UTCD) with 0.13 billion urban tree samples at 2 m resolution, which fills the deficiency of standard dataset in urban tree cover research field. Quantitative analysis of our products was conducted on two typical study sites of Beijing and Wuhan. The results show that our products recover averagely more than 58.72% of urban tree covers that have been underestimated in the existing land cover/forest cover products, and outperforms the state-of-the-art approach both visually and quantitatively, by averagely 11.31% improvement in overall accuracy. From our annual products during 2016–2020, we found an evolution characteristic of urban tree cover: it is more stable in developed cities like Beijing, while more fluctuated in developing cities like Wuhan, and the alteration are usually concentrated at the outer-ring of downtown, which may be caused by the municipal planning and the land development of real estate industry. Numéro de notice : A2022-073 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102667 En ligne : https://doi.org/10.1016/j.jag.2021.102667 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99438
in International journal of applied Earth observation and geoinformation > vol 106 (February 2022) . - n° 102667[article]Research on 3D model reconstruction based on a sequence of cross-sectional images / Zhiguo Dong in Machine Vision and Applications, vol 32 n°4 (July 2021)
[article]
Titre : Research on 3D model reconstruction based on a sequence of cross-sectional images Type de document : Article/Communication Auteurs : Zhiguo Dong, Auteur ; Xiaobo Wu, Auteur ; Zhipeng Ma, Auteur Année de publication : 2021 Article en page(s) : n° 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse infrapixellaire
[Termes IGN] B-Spline
[Termes IGN] détection de contours
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de pointsRésumé : (auteur) It is often difficult to obtain the high-precision inner cavity contour size and 3D model of parts and components in reverse engineering. This paper proposes a method that uses a sequence of section images of a part to reconstruct their 3D models. This method cuts the part layer by layer to obtain the sectional images and extracts the 3D information of the sectional image contours to generate point clouds. These point clouds are then used to reconstruct a 3D model of the part. High contrast material is used to embed the target part for pre-processing. A machining centre was used to mill the part layer by layer vertically to acquire high precision section profile images. The improved Canny edge detection operator was combined with the spatial moment sub-pixel subdivision algorithm to improve the edge detection accuracy. The camera imaging model algorithm transforms the coordinates of the image edge position to obtain a high-precision 3D point cloud of the part. The 3D solid model of the target part was obtained using NURBS surface reconstruction. The results show that the 3D model reconstruction method using the profile sequence of the cross-sectional images is independent of the complexity of the part’s structure and the complete internal structure of the part can be obtained. The proposed edge detection algorithm significantly refines the edge position of the contours in the cross-sectional image and the measurement accuracy was improved. This method improves the minimum deviation to 50 μm. The shape accuracy of roundness, cylindricity and perpendicularity of the structure is high. The proposed method can meet the reverse precision requirements in general precision machining. Numéro de notice : A2021-635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00138-021-01220-7 Date de publication en ligne : 11/06/2021 En ligne : https://doi.org/10.1007/s00138-021-01220-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98299
in Machine Vision and Applications > vol 32 n°4 (July 2021) . - n° 92[article]Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification Type de document : Article/Communication Auteurs : Yu Li, Auteur ; Ting Lu, Auteur ; Shutao Li, Auteur Année de publication : 2020 Article en page(s) : pp 4976 - 4988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] échantillonnage
[Termes IGN] image hyperspectrale
[Termes IGN] image multiple
[Termes IGN] segmentation sémantique
[Termes IGN] superpixelRésumé : (auteur) Active learning (AL) attempts to actively select the most representative or useful training samples in an iterative manner. The aim is to simultaneously improve the classification performance and reduce the manual labeling effort. In this article, a novel subpixel-pixel-superpixel-based multiview AL (MAL) (SPS-MAL) method is proposed for hyperspectral image (HSI) classification. Here, the multiple views are generated via extracting the subpixel-level, pixel-level, and superpixel-level information. The multiple views can reflect various characteristics of HSI, i.e., spectral mixture, spectral discrimination, and spectral–spatial structure. Therefore, the joint use of diverse and complementary information in multiple views will contribute to a better identification ability of different classes. In addition, a coarse-to-fine MAL algorithm is introduced to effectively select the most representative samples with the most uncertainty. Specifically, a disagreement analysis on multiple views and joint posterior probability estimation is used to query unlabeled samples. Along with the expansion of training samples, view-specific confidence scores are estimated to adaptively integrate the classification results of multiple views, according to their discrimination performance. In this way, the classification accuracy will be further boosted while the number of necessary training samples can be significantly reduced. The experimental classification results on three well-known HSIs demonstrate the effectiveness of the proposed SPS-MAL method. Numéro de notice : A2020-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2971081 Date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2971081 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95388
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4976 - 4988[article]Subpixel SAR image registration through parabolic interpolation of the 2-D cross correlation / Luca Pallotta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
[article]
Titre : Subpixel SAR image registration through parabolic interpolation of the 2-D cross correlation Type de document : Article/Communication Auteurs : Luca Pallotta, Auteur ; Gaetano Giunta, Auteur ; Carmine Clemente, Auteur Année de publication : 2020 Article en page(s) : pp 4132 - 4144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse infrapixellaire
[Termes IGN] corrélation croisée normalisée
[Termes IGN] image captée par drone
[Termes IGN] image radar moirée
[Termes IGN] interpolation
[Termes IGN] précision infrapixellaireRésumé : (auteur) In this article, the problem of synthetic aperture radar (SAR) images coregistration is considered. In particular, a novel algorithm aimed at achieving a fine subpixel coregistration accuracy is developed. The procedure is based on the parabolic interpolation of the 2-D cross correlation computed between the two SAR images to be aligned. More precisely, from the 2-D cross correlation, a neighborhood of its peak value is extracted and the interpolation of both the 2-D paraboloid and the two alternative 1-D parabolas is computed to provide the finer misregistration estimation with subpixel accuracy. The main advantage of the proposed framework is that the overall computational burden is only due to the 2-D cross correlation estimation since the parabolic interpolation is calculated with a closed-form expression. The results obtained on real recorded unmanned aerial vehicle (UAV) SAR data highlight the effectiveness of the proposed approach as well as its capabilities to provide some benefits with respect to other available strategies. Numéro de notice : A2020-284 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961245 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961245 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95107
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4132 - 4144[article]From subpixel to superpixel : a novel fusion framework for hyperspectral image classification / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : From subpixel to superpixel : a novel fusion framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4398 - 4411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Supervised classification of hyperspectral images (HSI) is a very challenging task due to the existence of noisy and mixed spectral characteristics. Recently, the widely developed spectral unmixing techniques offer the possibility to extract spectral mixture information at a subpixel level, which can contribute to the categorization of seriously mixed spectral pixels. Besides, it has been demonstrated that the discrimination between different materials will be improved by integrating the geometry and structure information, which can be derived from the variance between neighboring pixels. Furthermore, by incorporating the spatial context, the superpixel-based spectral-spatial similarity information can be used to smooth classification results in homogeneous regions. Therefore, a novel fusion framework for HSI classification that combines subpixel, pixel, and superpixel-based complementary information is proposed in this paper. Here, both feature fusion and decision fusion schemes are introduced. For the feature fusion scheme, the first step is to extract subpixel-level, pixel-level, and superpixel-level features from HSI, respectively. Then, the multiple feature-induced kernels are fused to form one composite kernel, which is incorporated with a support vector machine (SVM) classifier for label assignment. For the decision fusion scheme, class probabilities based on three different features are estimated by the probabilistic SVM classifier first. Then, the class probabilities are adaptively fused to form a probabilistic decision rule for classification. Experimental results tested on different real HSI images can demonstrate the effectiveness of the proposed fusion schemes in improving discrimination capability, when compared with the classification results relied on each individual feature. Numéro de notice : A2017-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691906 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86439
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4398 - 4411[article]The MODIS cloud optical and microphysical products : collection 6 updates and examples from Terra and Aqua / Steven Platnick in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)PermalinkGuided superpixel method for topographic map processing / Qiguang Miao in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)PermalinkSpatiotemporal subpixel mapping of time-series images / Qunming Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)PermalinkUnsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)PermalinkUniformity-based superpixel segmentation of hyperspectral images / Arun M. Saranathan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)PermalinkEfficient superpixel-level multitask joint sparse representation for hyperspectral image classification / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)PermalinkOn spectral unmixing resolution using extended support vector machines / Xiaofeng Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)PermalinkAn adaptive subpixel mapping method based on MAP model and class determination strategy for hyperspectral remote sensing imagery / Yanfei Zhong in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkProgressive band processing of constrained energy minimization for subpixel detection / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkSub-pixel-scale land cover map updating by integrating change detection and sub-pixel mapping / Xiaodong Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 1 (January 2015)Permalink