Descripteur
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Entry separation using a mixed visual and textual language model: Application to 19th century French trade directories / Bertrand Duménieu (2023)
Titre : Entry separation using a mixed visual and textual language model: Application to 19th century French trade directories Type de document : Article/Communication Auteurs : Bertrand Duménieu , Auteur ; Edwin Carlinet, Auteur ; Nathalie Abadie , Auteur ; Joseph Chazalon, Auteur Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Projets : SODUCO / Perret, Julien Importance : 20 p. Format : 21 x 30 cm Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] annuaire
[Termes IGN] dix-neuvième siècle
[Termes IGN] modèle de langue
[Termes IGN] reconnaissance de nomsRésumé : (Auteur) When extracting structured data from repetitively organized documents, such as dictionaries, directories, or even newspapers, a key challenge is to correctly segment what constitutes the basic text regions for the target database. Traditionally, such a problem was tackled as part of the layout analysis and was mostly based on visual clues for dividing (top-down) approaches. Some agglomerating (bottom-up) approaches started to consider textual information to link similar contents, but they required a proper over-segmentation of ne-grained units. In this work, we propose a new pragmatic approach whose eciency is demonstrated on 19 th century French Trade Directories. We propose to consider two sub-problems: coarse layout detection (text columns and reading order), which is assumed to be eective and not detailed here, and a ne-grained entry separation stage for which we propose to adapt a state-of-the-art Named Entity Recognition (NER) approach. By injecting special visual tokens, coding, for instance, indentation or breaks, into the token stream of the language model used for NER purpose, we can leverage both textual and visual knowledge simultaneously. Code, data, results and models are available at https://github.com/soduco/ paper-entryseg-icdar23-code, https://huggingface.co/HueyNemud/ (icdar23-entrydetector* variants). Numéro de notice : P2023-002 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE/TOPONYMIE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 17/02/2023 En ligne : https://hal.science/hal-03994702v1/ Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102609