Détail de l'auteur
Auteur J.G. Ganascia |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Apprentissage supervisé pour la généralisation cartographique Type de document : Thèse/HDR Auteurs : Sébastien Mustière , Auteur ; J.G. Ganascia, Directeur de thèse Editeur : Paris : Université de Paris 6 Pierre et Marie Curie Année de publication : 2001 Importance : 241 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de doctorat en informatique, option intelligence artificielleLangues : Français (fre) Descripteur : [Termes IGN] apprentissage dirigé
[Termes IGN] base de connaissances
[Termes IGN] exagération de forme
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] objet géographique
[Termes IGN] réseau routier
[Termes IGN] système expert
[Vedettes matières IGN] GénéralisationIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse a pour contexte l'automatisation de la généralisation cartographique, processus de création d'une carte à partir d'une base de données géographique trop détaillée. Pour réaliser cela, de nombreux algorithmes existent pour transformer la géométrie des objets géographiques à représenter sur la carte, mais aucun d'entre eux n'est générique. Nous adoptons alors une approche pas à pas, adaptative et focalisée, où le traitement d'un objet nécessite l'application de plusieurs algorithmes sur des espaces de travail adéquats. Dans ce contexte, il faut définir des règles permettant de choisir quels algorithmes appliquer sur un objet donné à partir de la description de celui-ci par un ensemble de mesures numériques. Un processus d'enchaînement des algorithmes est mis au point empiriquement pour la généralisation des routes. L'efficacité et les limites de ce processus conduisent à envisager l'utilisation de l'apprentissage automatique supervisé pour acquérir les connaissances nécessaires à un système expert cartographique. Notre problème d'apprentissage se caractérise par la recherche de règles efficaces et compréhensibles à partir d'exemples peu nombreux, bruités et de description riche. Un apprentissage classique produit alors des règles de faible qualité. Pour améliorer cela, nous guidons l'apprentissage par les connaissances du domaine en décomposant notre problème d'apprentissage en plusieurs sous-problèmes plus simples : nous apprenons tout à tour à abstraire puis à choisir comment transformer les objets géographiques manipulés. La phase d'abstraction consiste à reformuler la représentation des observables sous la forme d'un ensemble restreint de nouveaux attributs symboliques. La phase de choix de transformation consiste à déterminer quelle transformation réaliser en fonction de la description abstraite de l'objet. L'introduction de cette phase d'abstraction permet d'apprendre des règles cartographiques à la fois plus efficaces et plus compréhensibles qu'un apprentissage direct. Elle permet d'améliorer ainsi la qualité cartographique des résultats obtenus. Note de contenu : A GENERALISATION CARTOGRAPHIQUE AUTOMATIQUE
A. 1 Représentation de l'Information Géographique Numérique
A. 2 Opérations de généralisation cartographique
1 Simplifier
2 Caricaturer
3 Harmoniser
A.3 Algorithmes de généralisation cartographique
1 De la compression aux premiers algorithmes de généralisation
2 Propriétés des algorithmes de généralisation :
- Trois algorithmes représentatifs de différentes approches
- Contraintes, opérations, et champ d'application des algorithmes
3 Enchainement des algorithmes .
A.4 Recueil des connaissances de généralisation
A.5 Sujet et approche.
B GENERALISATION CARTOGRAPHIQUE DES ROUTES : LE PROCESSUS GALBE
B. 1 Domaine d'application : les routes pour les cartes routières
B.2 Règles de généralisation cartographique des routes
B.3 Le bon espace de travail pour les routes
1 Focalisation idéale
2 Focalisation selon l'empâtement
- Définitions théoriques de l'empâtement
- Evaluation empirique des définitions de l'empâtement
- Implémentation et résultats
B 4 Algorithmes de transformation
1 Algorithmes de caricature d'une série de virages empâtée
2 Algorithmes de caricature d'un virage empâté
3 Algorithmes de simplification d'une ligne entière BAA Propagation des déformations
B.5 Processus GALBE
1 Mesures de description
2 Moteur du processus
B.6 Evaluation des résultats
1 Analyse par des cartographes
2 Application au réseau routier des cartes au 1:250.000
3 Bilan de GALBE
B.7 Vers l'utilisation de l'apprentissage automatique
C APPRENTISSAGE AUTOMATIQUE SUPERVISE
C.1 Présentation de l'apprentissage supervisé et définitions
C.2 Poser un problème d'apprentissage
C.3 Algorithmes d'apprentissage
1 L'apprentissage supervisé, un problème de recherche
2 Mise en ceuvre des biais d'apprentissage
3 Types d'algorithmes existants
4 Choisir un algorithme d'apprentissage
5 Combiner plusieurs algorithmes.
C 4 Vers des connaissances plus efficaces et mieux structurées
C.5 Evaluation de l'apprentissage
1 Evaluation théorique
2 Evaluation empirique
C.6 Conclusion
D APPRENTISSAGE ET GENERALISATION CARTOGRAPHIQUE
D. 1 Introduction
1 Bref rappel du problème
2 Contexte : utilisation de la tâche apprise.
D. 2 Spécificité de notre problème vis-à-vis de l'apprentissage
1 Difficultés du recueil d'exemples
2 Bruit sur les exemples
3 Taille des exemples
4 Bilan : caractéristiques des exemples
D. 3 Abstraire
1 Modèle théorique d'abstraction
2 Abstraction et cartographie
3 Abstraction et apprentissage
D. 4 Construction de la méthode de résolution de problème
1 Méthode initiale de résolution de problème
2 Abstraire les mesures
3 Déterminer et spécifier : opération, algorithme
4 Couvrir et différencier : algorithmes applicables, algorithme choisi
5 Paramétrage des algorithmes
D. 5 Bilan -processus d'apprentissage
1 Méthode de définition du processus d'apprentissage
2 Intérêt de l'approche
E EXPERIMENTATION DE L'APPRENTISSAGE SUR LES ROUTES
E. 1 Présentation des tests
1 Objetsétudiés
2 Langage abstrait utilisé
3 Mesures utilisées
4 Opérations et algorithmes géométriques utilisés
5 Méthode de résolution de problème choisie
6 Recueil des exemples
7 Algorithme d'apprentissage utilisé : RIPPER
8 Expérimentations réalisées
E. 2 Résultats : règles apprises
1 Détermination des attributs descriptifs abstraits
2 Détermination de l'opération .
3 Applicabilité des algorithmes
4 Choix de l'algorithme
5 Pararnétrage
6 Enchaînement des inférences
E. 3 Analyse cartographique de l'application des regles apprises
1 Qualite des résultats
2 Analyse des erreurs
3 Convergence et temps de calcul
4 Généricité de lieu et d'échelle
E. 4 Intérêt de la méthode de résolution de problème
1 Comparaison a l'apprentissage direct.
2 Influence de chaque étape
3 Intérêt de l'étape d'abstraction des mesures
E. 5 Bilan des expérimentationsNuméro de notice : 11635 Affiliation des auteurs : COGIT (1988-2011) Thématique : GEOMATIQUE Nature : Thèse française Note de thèse : Thèse de doctorat : Informatique. Intelligence artificielle : Paris 6 : 2001 Organisme de stage : COGIT (IGN) nature-HAL : Thèse DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=45165 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 11635-01 THESE Livre Centre de documentation Thèses Disponible Documents numériques
en open access
11635_these_2001_mustiere.pdfAdobe Acrobat PDF CIME, une application des systèmes experts à la télédétection / Catherine Mering (30/05/1988)