Descripteur
Termes IGN > informatique > appariement automatique
appariement automatiqueSynonyme(s)algorithme d'appariement |
Documents disponibles dans cette catégorie (62)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)
Titre : PSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet , Auteur ; Marc Pierrot-Deseilligny , Auteur Editeur : Computer vision foundation CVF Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition workshops 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : pp 6526 - 6535 Note générale : bibliographie
voir aussi https://openaccess.thecvf.com/content/CVPR2023W/PCV/supplemental/Wu_PSMNet-FusionX3_LiDAR-Guided_Deep_CVPRW_2023_supplemental.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne à axe vertical
[Termes IGN] scène 3D
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Dense image matching (DIM) and LiDAR are two complementary techniques for recovering the 3D geometry of real scenes. While DIM provides dense surfaces, they are often noisy and contaminated with outliers. Conversely, LiDAR is more accurate and robust, but less dense and more expensive compared to DIM. In this work, we investigate learning-based methods to refine surfaces produced by photogrammetry with sparse LiDAR point clouds. Unlike the current state-of-the-art approaches in the computer vision community, our focus is on aerial acquisitions typical in photogrammetry. We propose a densification pipeline that adopts a PSMNet backbone with triangulated irregular network interpolation based expansion, feature enhancement in cost volume, and conditional cost volume normalization, i.e. PSMNet-FusionX3. Our method works better on low density and is less sensitive to distribution, demonstrating its effectiveness across a range of LiDAR point cloud densities and distributions, including analyses of dataset shifts. Furthermore, we have made both our aerial (image and disparity) dataset and code available for public use. Further information can be found at https://github.com/ whuwuteng/PSMNet-FusionX3. Numéro de notice : C2023-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication DOI : sans En ligne : https://openaccess.thecvf.com/content/CVPR2023W/PCV/papers/Wu_PSMNet-FusionX3_Li [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103277 Fast local adaptive multiscale image matching algorithm for remote sensing image correlation / Niccolò Dematteis in Computers & geosciences, vol 159 (February 2022)
[article]
Titre : Fast local adaptive multiscale image matching algorithm for remote sensing image correlation Type de document : Article/Communication Auteurs : Niccolò Dematteis, Auteur ; Daniele Giordan, Auteur ; Bruno Crippa, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] données multiéchelles
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] image Sentinel-MSI
[Termes IGN] implémentation (informatique)
[Termes IGN] Matlab
[Termes IGN] PatagonieRésumé : (auteur) Various studies have shown that image correlation calculated in the space domain outperforms frequency-based methods. However, such an approach usually requires great computational efforts, making it challenging to adopt for surveying fast moving processes like glaciers, particularly over wide areas. We present a local adaptive multiscale image matching algorithm (LAMMA), which repeatedly applies image correlation on grids of increasing spatial resolution and adapts the size of the interrogation area according to the local range of displacements. LAMMA allows reducing the number of calculi of several orders of magnitude and limits the occurrence of displacement outliers. We show an example of LAMMA application on Sentinel-2 images to measure glaciers flow of the Southern Patagonian Icefield, where LAMMA's runtime was comparable to that of frequency-based correlation. LAMMA's Matlab code is freely available on GitHub. Numéro de notice : A2022-094 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104988 Date de publication en ligne : 19/11/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104988 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99528
in Computers & geosciences > vol 159 (February 2022) . - n° 104988[article]Photogrammetric point clouds: quality assessment, filtering, and change detection / Zhenchao Zhang (2022)
Titre : Photogrammetric point clouds: quality assessment, filtering, and change detection Type de document : Thèse/HDR Auteurs : Zhenchao Zhang, Auteur ; M. George Vosselman, Auteur ; Markus Gerke, Auteur ; Michael Ying Yang, Auteur Editeur : Enschede [Pays-Bas] : International Institute for Geo-Information Science and Earth Observation ITC Année de publication : 2022 Note générale : bibliographie
NB : EMBARGO SUR LE TEXTE JUSQU'AU 1ER JUILLET 2022Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement dense
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] qualité des données
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) 3D change detection draws more and more attention in recent years due to the increasing availability of 3D data. It can be used in the fields of land use / land cover (LULC) change detection, 3D geographic information updating, terrain deformation analysis, urban construction monitoring et al. Our motivation to study 3D change detection is mainly related to the practical need to update the outdated point clouds captured by Airborne Laser Scanning (ALS) with new point clouds obtained by dense image matching (DIM).
The thesis has three main parts. The first part, chapter 1, explains the motivation, providing a review of current ALS and airborne photogrammetry techniques. It also presents the research objectives and questions. The second part including chapter 2 and chapter 3 evaluates the quality of photogrammetric products and investigates their potential for change detection. The third part including chapter 4 and chapter 5 proposes two methods for change detection that meet different requirements.
To investigate the potential of using point clouds derived by dense matching for change detection, we propose a framework for evaluating the quality of 3D point clouds and DSMs generated by dense image matching. Our evaluation framework based on a large number of square patches reveals the distribution of dense matching errors in the whole photogrammetric block. Robust quality measures are proposed to indicate the DIM accuracy and precision quantitatively. The overall mean offset to the reference is 0.1 Ground Sample Distance (GSD); the maximum mean deviation reaches 1.0 GSD. We also find that the distribution of dense matching errors is homogenous in the whole block and close to a normal distribution based on many patch-based samples. However, in some locations, especially along narrow alleys, the mean deviations may get worse. In addition, the profiles of ALS points and DIM points reveal that the DIM profile fluctuates around the ALS profile. We find that the accuracy of DIM point cloud improves and that the noise level decreases on smooth ground areas when oblique images are used in dense matching together with nadir images.
Then we evaluate whether the standard LiDAR filters are effective to filter dense matching points in order to derive accurate DTMs. Filtering results on a city block show that LiDAR filters perform well on the grassland, along bushes and around individual trees if the point cloud is sufficiently precise. When a ranking filter is used on the point clouds before filtering, the filtering will identify fewer but more reliable ground points. However, some small objects on the terrain will be filtered out. Since we aim at obtaining accurate DTMs, the ranking filter shows its value in identifying reliable ground points. Based on the previous findings in DIM quality, we propose a method to detect building changes between ALS and photogrammetric data. Firstly, the ALS points and DIM points are split out and concatenated with the orthoimages. The multimodal data are normalized to feed into a pseudo-Siamese Neural network for change detection. Then, the changed objects are delineated through per-pixel classification and artefact removal. The change detection module based on a pseudo-Siamese CNN can quickly localize the changes and generate coarse change maps. The next module can be used in precise mapping of change boundaries. Experimental results show that the proposed pseudo-Siamese Neural network can cope with the DIM errors and output plausible change detection results. Although the point cloud quality from dense matching is not as fine as laser scanning points, the spectral and textural information provided by the orthoimages serve as a supplement.
Considering that the tasks of semantic segmentation and change detection are correlated, we propose SiamPointNet++ model to combine the two tasks in one framework. The method outputs a pointwise joint label for each ALS point. If an ALS point is unchanged, it is assigned a semantic label; If an ALS point is changed, it is assigned a change label. The sematic and change information are included in the joint labels with minimum information redundancy. The combined Siamese network learns both intra-epoch and inter-epoch features. Intra-epoch features are extracted at multiple scales to embed the local and global information. Inter-epoch features are extracted by Conjugated Ball Sampling (CBS) and concatenated to make change inference. Experiments on the Rotterdam data set indicate that the network is effective in learning multi-task features. It is invariant to the permutation and noise of inputs and robust to the data difference between ALS and DIM data. Compared with a sophisticated object-based method and supervised change detection, this method requires much less hyper-parameters and human intervention but achieves superior performance.
As a conclusion, the thesis evaluates the quality of dense matching points and investigates its potential of updating outdated ALS points. The two change detection methods developed for different applications show their potential in the automation of topographic change detection and point cloud updating. Future work may focus on improving the generalizability and interpretability of the proposed models.Numéro de notice : 20403 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse étrangère Note de thèse : PhD thesis : Geo-Information Science and Earth Observation : Enschede, university of Twente : 2022 DOI : 10.3990/1.9789036552653 Date de publication en ligne : 14/01/2022 En ligne : https://research.utwente.nl/en/publications/photogrammetric-point-clouds-quality [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100963 STC-Det: A slender target detector combining shadow and target information in optical satellite images / Zhaoyang Huang in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : STC-Det: A slender target detector combining shadow and target information in optical satellite images Type de document : Article/Communication Auteurs : Zhaoyang Huang, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4183 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] fusion de données
[Termes IGN] image satellite
[Termes IGN] ombreRésumé : (auteur) Object detection has made great progress. However, due to the unique imaging method of optical satellite remote sensing, the detection of slender targets is still insufficient. Specifically, the perspective of optical satellites is small, and the characteristics of slender targets are severely lost during imaging, resulting in insufficient detection task information; at the same time, the appearance of slender targets in the image is greatly affected by the satellite perspective, which is likely to cause insufficient generalization capabilities of conventional detection models. In response to these two points, we have made some improvements. First, in this paper, we introduce the shadow as auxiliary information to complement the trunk features of the target lost in imaging. Second, to reduce the impact of satellite perspective on imaging, in this paper, we use the characteristic that shadow information is not affected by satellite perspective to design STC-Det. STC-Det treats the shadow and the target as two different types of targets and uses the shadow information to assist the detection, reducing the impact of the satellite perspective on detection. Among them, in order to improve the performance of STC-Det, we propose an automatic matching method (AMM) of shadow and target and a feature fusion method (FFM). Finally, this paper proposes a new method to calculate the heatmaps of detectors, which verifies the effectiveness of the proposed network in a visual way. Experiments show that when the satellite perspective is variable, the precision of STC-Det is increased by 1.7%, and when the satellite perspective is small, the precision of STC-Det is increased by 5.2%. Numéro de notice : A2021-804 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204183 Date de publication en ligne : 19/10/2021 En ligne : https://doi.org/10.3390/rs13204183 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98860
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4183[article]Feature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
[article]
Titre : Feature detection and description for image matching: from hand-crafted design to deep learning Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 58 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] SIFT (algorithme)Résumé : (Auteur) In feature based image matching, distinctive features in images are detected and represented by feature descriptors. Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points. In this paper, we first shortly discuss the general framework. Then, we review feature detection as well as the determination of affine shape and orientation of local features, before analyzing feature description in more detail. In the feature description review, the general framework of local feature description is presented first. Then, the review discusses the evolution from hand-crafted feature descriptors, e.g. SIFT (Scale Invariant Feature Transform), to machine learning and deep learning based descriptors. The machine learning models, the training loss and the respective training data of learning-based algorithms are looked at in more detail; subsequently the various advantages and challenges of the different approaches are discussed. Finally, we present and assess some current research directions before concluding the paper. Numéro de notice : A2021-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1843376 Date de publication en ligne : 17/11/2020 En ligne : https://doi.org/10.1080/10095020.2020.1843376 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97379
in Geo-spatial Information Science > vol 24 n° 1 (March 2021) . - pp 58 - 74[article]A points of interest matching method using a multivariate weighting function with gradient descent optimization / Zhou Yang in Transactions in GIS, Vol 25 n° 1 (February 2021)PermalinkPermalinkPermalinkDense stereo matching strategy for oblique images that considers the plane directions in urban areas / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)PermalinkReestimating a minimum acceptable geocoding hit rate for conducting a spatial analysis / Alvaro Briz-Redon in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)PermalinkAn Illumination Insensitive descriptor combining the CSLBP features for street view images in augmented reality: experimental studies / Zejun Xiang in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)PermalinkPermalinkCNN-based dense image matching for aerial remote sensing images / Shunping Ji in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)PermalinkEfficiently annotating object images with absolute size information using mobile devices / Martin Hofmann in International journal of computer vision, vol 127 n° 2 (February 2019)PermalinkFusion de sets de photos provenant de capteurs différents dans le domaine de l’archéologie / Hugo De Paulis (2019)Permalink