Détail de l'auteur
Auteur Jurgen Müller |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using quantum optical sensors for determining the Earth’s gravity field from space / Jurgen Müller in Journal of geodesy, vol 94 n° 8 (August 2020)
[article]
Titre : Using quantum optical sensors for determining the Earth’s gravity field from space Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; Hu Wu, Auteur Année de publication : 2020 Article en page(s) : n° 71 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] capteur optique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] gradient
[Termes IGN] gradiomètre
[Termes IGN] gravimétrie spatiale
[Termes IGN] horloge du satellite
[Termes IGN] incertitude temporelle
[Termes IGN] longueur d'onde
[Termes IGN] onde myriamétrique
[Termes IGN] optique quantiqueRésumé : (auteur) Quantum optical technology provides an opportunity to develop new kinds of gravity sensors and to enable novel measurement concepts for gravimetry. Two candidates are considered in this study: the cold atom interferometry (CAI) gradiometer and optical clocks. Both sensors show a high sensitivity and long-term stability. They are assumed on board of a low-orbit satellite like gravity field and steady-state ocean circulation explorer (GOCE) and gravity recovery and climate experiment (GRACE) to determine the Earth’s gravity field. Their individual contributions were assessed through closed-loop simulations which rigorously mapped the sensors’ sensitivities to the gravity field coefficients. Clocks, which can directly obtain the gravity potential (differences) through frequency comparison, show a high sensitivity to the very long-wavelength gravity field. In the GRACE orbit, clocks with an uncertainty level of 1.0×10−18 are capable to retrieve temporal gravity signals below degree 12, while 1.0×10−17 clocks are useful for detecting the signals of degree 2 only. However, it poses challenges for clocks to achieve such uncertainties in a short time. In space, the CAI gradiometer is expected to have its ultimate sensitivity and a remarkable stability over a long time (measurements are precise down to very low frequencies). The three diagonal gravity gradients can properly be measured by CAI gradiometry with a same noise level of 5.0 mE/Hz−−−√. They can potentially lead to a 2–5 times better solution of the static gravity field than that of GOCE above degree and order 50, where the GOCE solution is mainly dominated by the gradient measurements. In the lower degree part, benefits from CAI gradiometry are still visible, but there, solutions from GRACE-like missions are superior. Numéro de notice : A2020-537 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01401-8 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1007/s00190-020-01401-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95730
in Journal of geodesy > vol 94 n° 8 (August 2020) . - n° 71[article]Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science / Jurgen Müller in Journal of geodesy, vol 93 n°11 (November 2019)
[article]
Titre : Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; Thomas W. Murphy Jr, Auteur ; Ulrich Schreiber, Auteur ; et al., Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Vedettes matières IGN] Géodésie spatiale
[Termes IGN] géophysique
[Termes IGN] Lune
[Termes IGN] paramètres d'orientation de la Terre
[Termes IGN] principe d'équivalence
[Termes IGN] relativité générale
[Termes IGN] repère de référence
[Termes IGN] rétroréflecteur
[Termes IGN] sciences de la Terre et de l'univers
[Termes IGN] signal laser
[Termes IGN] télémétrie laser sur la LuneRésumé : (auteur) Only a few sites on Earth are technically equipped to carry out Lunar Laser Ranging (LLR) to retroreflector arrays on the surface of the Moon. Despite the weak signal, they have successfully provided LLR range data for about 49 years, generating about 26,000 normal points. Recent system upgrades and new observatories have made millimeter-level range accuracy achievable. Based on appropriate modeling and sophisticated data analysis, LLR is able to determine many parameters associated with Earth–Moon dynamics, involving the lunar ephemeris, lunar physics, the Moon’s interior, reference frames and Earth orientation parameters. LLR has also become one of the strongest tools for testing Einstein’s theory of general relativity in the solar system. By extending the standard solution, it is possible to solve for parameters related to gravitational physics, like the temporal variation of the gravitational constant, metric parameters as well as the strong equivalence principle, preferred-frame effects and standard-model extensions. This paper provides a review about LLR measurement and analysis. After a short historical overview, we describe the key findings of LLR, the apparatus and technologies involved, the requisite modeling techniques, some recent results and future prospects on all fronts. We expect continued improvements in LLR, maintaining its lead in contributing to science. Numéro de notice : A2019-611 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01296-0 Date de publication en ligne : 17/09/2019 En ligne : https://doi.org/10.1007/s00190-019-01296-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94799
in Journal of geodesy > vol 93 n°11 (November 2019)[article]High performance clocks and gravity field determination / Jurgen Müller in Space Science Reviews, vol 214 n° 1 (February 2018)
[article]
Titre : High performance clocks and gravity field determination Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; D. Dirkx, Auteur ; S. M. Kopeikin, Auteur ; Guillaume Lion , Auteur ; Isabelle Panet , Auteur ; Gérard Petit, Auteur ; Pieter N.A.M. Visser, Auteur Année de publication : 2018 Projets : 3-projet - voir note / , AdOC / Note générale : bibliographie
Jürgen Müller gratefully acknowledges support by the DFG Sonderforschungsbereich (SFB 1128: geo-Q) Relativistic Geodesy and Gravimetry with Quantum Sensors.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] chronométrie
[Termes IGN] échelle de temps
[Termes IGN] gravimétrie spatiale
[Termes IGN] horloge atomique
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] potentiel de pesanteur terrestre
[Termes IGN] relativité généraleRésumé : (auteur) Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10−18. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock’s localization. According to general relativity the relative accuracy of clocks in 10−18 is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with closely-related deficiencies of this method like an extra-ordinary knowledge of the spacecraft velocity, etc. For all these applications besides the near-future prospects, we also discuss the challenges that are related to using those novel clock data in geodesy. Numéro de notice : A2018-197 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11214-017-0431-z Date de publication en ligne : 30/11/2017 En ligne : https://doi.org/10.1007/s11214-017-0431-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89864
in Space Science Reviews > vol 214 n° 1 (February 2018)[article]Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) / Benjamin Männel (2018)
Titre : Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) Type de document : Article/Communication Auteurs : Benjamin Männel, Auteur ; Daniela Thaller, Auteur ; Markus Rothacher, Auteur ; Johannes Böhm , Auteur ; Jurgen Müller, Auteur ; Susanne Glaser, Auteur ; Rolf Dach, Auteur ; Richard Biancale, Auteur ; Mathis Blossfeld, Auteur ; Alexander Kehm, Auteur ; Iván Herrera Pinzón, Auteur ; Franz Hofmann, Auteur ; Florian Andritsch, Auteur ; David Coulot , Auteur ; Arnaud Pollet , Auteur Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2018 Collection : International Association of Geodesy Symposia, ISSN 0939-9585 num. 149 Conférence : IAG 2017, joint IAG scientific assembly and IASPEI scientific assembly 30/07/2017 04/08/2017 Kobe Japon Proceedings Springer Importance : pp 161 - 164 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Global Geodetic Observing SystemRésumé : (auteur) The Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO) was established by the Bureau of Networks and Observations of the Global Geodetic Observing System (GGOS) in order to support – by prior performance analysis – activities to reach the GGOS requirements for the accuracy and stability of the terrestrial reference frame. Based on available data sets and simulated observations for further stations and satellite missions the committee studies the impact of technique-specific improvements, new stations, and additional co-locations in space on reference frame products. Simulation studies carried out so far show the importance of the individual station performance and additional stations for satellite laser ranging, the perspectives for lunar laser ranging assuming additional stations and reflectors, and the significant impact of the new VGOS antennas. Significant progress is achieved in processing VLBI satellite tracking data. New insights in technique-specific error sources were derived based on real data from short baselines. Regarding co-location in space PLATO members confirmed that E-GRASP could fulfill the GGOS requirements with reaching a geocenter and scale accuracy and stability of 1 mm and 0.1 mm/year, respectively. Numéro de notice : C2017-063 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/1345_2018_30 Date de publication en ligne : 11/04/2018 En ligne : http://dx.doi.org/10.1007/1345_2018_30 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90562 Geodesy / Wolfgang Torge (2012)
Titre : Geodesy Type de document : Guide/Manuel Auteurs : Wolfgang Torge, Auteur ; Jurgen Müller, Auteur Mention d'édition : 4th edition Editeur : Berlin, New York : Walter de Gruyter Année de publication : 2012 Importance : 433 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-3-11-020718-7 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] champ de gravitation
[Termes IGN] géodésie spatiale
[Termes IGN] géopositionnement
[Termes IGN] gravimétrie
[Termes IGN] mesure géodésique
[Termes IGN] réseau géodésique
[Termes IGN] système de référence géodésiqueIndex. décimale : 30.00 Géodésie - généralités Résumé : (Auteur) The fourth edition of this textbook has been thoroughly revised in order to reflect the central role which geodesy has achieved in the past ten years. The Global Geodetic Observing System established by the IAG utilizes a variety of techniques to determine the geometric shape of the Earth and its kinematics, the variations of Earth rotation, and the Earth’s gravity field. Space techniques play a fundamental role, with recent space missions also including gravity field recovery. Terrestrial techniques are important for regional and local applications, and for validating the results of the space missions. Global and regional reference systems are now well established and widely used. They also serve as a basis for geo-information systems. The analysis of the time variation of the geodetic products provides the link to other geosciences and contributes to proper modelling of geodynamic processes. The book follows the principal directions of geodesy, providing the theoretical background as well as the principles of measurement and evaluation methods. Selected examples of instruments illustrate the geodetic work. An extensive reference list supports further studies. The book is intended to serve as an introductory textbook for graduate students as well as a reference for scientists and engineers in the fields of geodesy, geophysics, surveying engineering and geomatics Note de contenu : 1 Introduction
1.1 Definition of geodesy
1.2 The objective of geodesy
1.3 Historical development of geodesy
1.4 Organization of geodesy, literature
2 Reference Systems and Reference Frames
2.1 Basic units and constants
2.2 Time systems
2.3 Reference coordinate systems: fundamentals
2.4 International reference systems and reference frames
2.5 Local level systems
3 The Gravity Field of the Earth
3.1 Fundamentals of gravity field theory
3.2 Geometry of the gravity field
3.3 Spherical harmonic expansion of the gravitational potential
3.4 The geoid
3.5 Temporal gravity variations
4 The Geodetic Earth Model
4.1 The rotational ellipsoid
4.2 The normal gravity field
4.3 Geodetic reference systems, optimum Earth model
5 Methods of Measurement
5.1 Atmospheric refraction
5.2 Satellite observations
5.3 Geodetic astronomy
5.4 Gravimetry
5.5 Terrestrial geodetic measurements
6 Methods of Positioning and Gravity Field Modeling
6.1 Residual gravity field
6.2 Three-dimensional positioning
6.3 Horizontal positioning
6.4 Height determination
6.5 Fundamentals of gravity field modeling
6.6 Global gravity field modeling
6.7 Local gravity field modeling
6.8 Least-squares collocation
7 Geodetic and Gravimetric Networks
7.1 Horizontal control networks
7.2 Vertical control networks
7.3 Three-dimensional networks
7.4 Gravity networks
8 Structure and Dynamics of the Earth
8.1 The geophysical Earth model
8.2 The upper layers of the Earth
8.3 Geodesy and recent geodynamicsNuméro de notice : 15799 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Manuel de cours DOI : sans Accessibilité hors numérique : Accessible via le SUDOC (sur demande au cdos) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=45266