Descripteur
Termes IGN > géomatique > base de données localisées > attribut > attribut sémantique
attribut sémantique |
Documents disponibles dans cette catégorie (27)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis Type de document : Article/Communication Auteurs : Chuan Yin, Auteur ; Binyu Zhang, Auteur ; Wanzeng Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] attribut sémantique
[Termes IGN] granularité (informatique)
[Termes IGN] granularité d'image
[Termes IGN] matrice de co-occurrence
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] relation sémantique
[Termes IGN] réseau sémantique
[Termes IGN] synonymieRésumé : (auteur) Expansion of the entity attribute information of geographic knowledge graphs is essentially the fusion of the Internet’s encyclopedic knowledge. However, it lacks structured attribute information, and synonymy and polysemy always exist. These reduce the quality of the knowledge graph and cause incomplete and inaccurate semantic retrieval. Therefore, we normalize the attributes of a geographic knowledge graph based on optimal granularity clustering and co-occurrence analysis, and use structure and the semantic relation of the entity attributes to identify synonymy and correlation between attributes. Specifically: (1) We design a classification system for geographic attributes, that is, using a community discovery algorithm to classify the attribute names. The optimal clustering granularity is identified by the marker target detection algorithm. (2) We complete the fine-grained identification of attribute relations by analyzing co-occurrence relations of the attributes and rule inference. (3) Finally, the performance of the system is verified by manual discrimination using the case of “landscape, forest, field, lake and grass”. The results show the following: (1) The average precision of spatial relations was 0.974 and the average recall was 0.937; the average precision of data relations was 0.977 and the average recall was 0.998. (2) The average F1 for similarity results is 0.473; the average F1 for co-occurrence analysis results is 0.735; the average F1 for rule-based modification results is 0.934; the results show that the accuracy is greater than 90%. Compared to traditional methods only focusing on similarity, the accuracy of synonymous attribute recognition improves the system and we are capable of identifying near-sense attributes. Integration of our system and attribute normalization can greatly improve both the processing efficiency and accuracy. Numéro de notice : A2022-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070360 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/ijgi11070360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101149
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 360[article]GisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : GisGCN: a visual graph-based framework to match geographical areas through time Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Nathalie Abadie , Auteur ; Valérie Gouet-Brunet , Auteur ; Liming Chen, Auteur Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Article en page(s) : n° 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] entité géographique
[Termes IGN] image aérienne
[Termes IGN] réseau sémantiqueRésumé : (auteur) Historical visual sources are particularly useful for reconstructing the successive states of the territory in the past and for analysing its evolution. However, finding visual sources covering a given area within a large mass of archives can be very difficult if they are poorly documented. In the case of aerial photographs, most of the time, this task is carried out by solely relying on the visual content of the images. Convolutional Neural Networks are capable to capture the visual cues of the images and match them to each other given a sufficient amount of training data. However, over time and across seasons, the natural and man-made landscapes may evolve, making historical image-based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval problem from a different novel point of view: by using geometrical and topological properties of geographic entities of the researched zone encoded as graph representations which are more robust to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial images are thought of as nodes in a graph, linked to each other by edges representing their spatial relationships. To build such graphs, we propose to use instances from topographic vector databases and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be successfully matched across time by means of the learned graph embedding. Numéro de notice : A2022-156 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020097 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.3390/ijgi11020097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100316
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 97[article]Automating and utilising equal-distribution data classification / Gennady Andrienko in International journal of cartography, vol 7 n° 1 (March 2021)
[article]
Titre : Automating and utilising equal-distribution data classification Type de document : Article/Communication Auteurs : Gennady Andrienko, Auteur ; Natalia Andrienko, Auteur ; Ibad Kureshi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 100 - 115 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse spatiale
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] carte choroplèthe
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] intervalle de classe
[Termes IGN] répartition géographiqueRésumé : (Auteur) Data classification, i.e. organising data items in groups (classes), is a general technique widely used in data visualisation and cartography, in particular, for creation of choropleth maps. Conventionally, data are classified by dividing the data range into intervals and assigning the same symbol or colour to all data falling within an interval. For instance, the intervals may be of the same length or may include the same number of data items. We propose a method for defining intervals so that some quantity represented by values of another attribute is equally distributed among the classes. This kind of classification supports exploratory analysis of relationships between the attribute used for the classification and the distribution of the phenomenon whose quantity is represented by the additional attribute. The approach may be especially useful when the distribution of the phenomenon is very unequal, with many data items having zero or low quantities and quite a few items having larger quantities. With such a distribution, standard statistical analysis of the relationships may be problematic. We demonstrate the potential of the approach by analysing data referring to a set of spatially distributed people (patients) in relationship to characteristics of the areas in which the people live. Numéro de notice : A2021-184 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2020.1863000 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.1080/23729333.2020.1863000 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97114
in International journal of cartography > vol 7 n° 1 (March 2021) . - pp 100 - 115[article]Using geometric and semantic attributes for semi-automated tag identification in OpenStreetMap data / Müslüm Hacar (2021)
Titre : Using geometric and semantic attributes for semi-automated tag identification in OpenStreetMap data Type de document : Article/Communication Auteurs : Müslüm Hacar, Auteur Editeur : Cardiff [Royaume-Uni] : Cardiff University Année de publication : 2021 Conférence : GISRUK 2021, 29th GIS research UK annual conference 14/04/2021 16/04/2021 Cardiff online Royaume-Uni OA Proceedings Importance : 6 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Ankara (Turquie)
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] loisir
[Termes IGN] OpenStreetMap
[Termes IGN] traitement de données localiséesRésumé : (auteur) OpenStreetMap is one of the successful volunteered geographic al information projects. Participants contribute to this crowdsourced project by adding geometric and semantic data. However, both missing geometric and semantic data still cause complete ness problems. In this paper, a semi-automated approach is suggested to identify the values of leisure tag of polygon features. The approach uses geometric (rectangularity, density, area, and distances to bus stop and shop) and semantic (amenity) data and estimates the key values using random forest classifier. In short, the results show that tag identification was conducted in three districts of Ankara with f - score s 78%, 86%, and 87%. Numéro de notice : C2021-082 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication DOI : 10.5281/zenodo.4665518 Date de publication en ligne : 06/04/2021 En ligne : https://doi.org/10.5281/zenodo.4665518 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101043 Classification of aerial photogrammetric 3D point clouds / Carlos Becker in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
[article]
Titre : Classification of aerial photogrammetric 3D point clouds Type de document : Article/Communication Auteurs : Carlos Becker, Auteur ; E. Rosinskaya, Auteur ; N. Häni, Auteur ; E. d' Angelo, Auteur ; Christoph Strecha, Auteur Année de publication : 2018 Article en page(s) : pp 287 - 295 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] attribut sémantique
[Termes IGN] image aérienne
[Termes IGN] information sémantique
[Termes IGN] modèle numérique de terrain
[Termes IGN] orthoimage
[Termes IGN] Pix4D
[Termes IGN] semis de points
[Termes IGN] valeur radiométriqueRésumé : (Auteur) We present a powerful method to extract per-point semantic class labels from aerial photogrammetry data. Labeling this kind of data is important for tasks such as environmental modeling, object classification, and scene understanding. Unlike previous point cloud classification methods that rely exclusively on geometric features, we show that incorporating color information yields a significant increase in accuracy in detecting semantic classes. We test our classification method on four real-world photogrammetry datasets that were generated with Pix4Dmapper, and with varying point densities. We show that off-the-shelf machine learning techniques coupled with our new features allow us to train highly accurate classifiers that generalize well to unseen data, processing point clouds containing 10 million points in less than three minutes on a desktop computer. We also demonstrate that our approach can be used to generate accurate Digital Terrain Models, outperforming approaches based on more simple heuristics such as Maximally Stable Extremal Regions. Numéro de notice : A2018-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.5.287 Date de publication en ligne : 01/05/2018 En ligne : https://doi.org/10.14358/PERS.84.5.287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89793
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 5 (mai 2018) . - pp 287 - 295[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018051 RAB Revue Centre de documentation En réserve L003 Disponible PermalinkA structured regularization framework for spatially smoothing semantic labelings of 3D point clouds / Loïc Landrieu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)PermalinkJoint classification and contour extraction of large 3D point clouds / Timo Hackel in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)PermalinkIndex-supported pattern matching on tuples of time-dependent values / Fabio Valdés in Geoinformatica, vol 21 n° 3 (July - September 2017)PermalinkMultivariate label-based thematic maps / Richard Brath in International journal of cartography, vol 3 n° 1 (June 2017)PermalinkA spatial anomaly points and regions detection method using multi-constrained graphs and local density / Yan Shi in Transactions in GIS, vol 21 n° 2 (April 2017)PermalinkEnriched geometric simplification of linear features / Rajesh Tamilmani in Geomatica, vol 71 n° 1 (March 2017)PermalinkSegmentation sémantique de données de télédétection multimodale : application aux peuplements forestiers / Clément Dechesne (2017)PermalinkDeep filter banks for texture recognition, description, and segmentation / Mircea Cimpoi in International journal of computer vision, vol 118 n° 1 (May 2016)PermalinkGeo-localization using volumetric representations of overhead imagery / Ozge C. Ozcanli in International journal of computer vision, vol 116 n° 3 (February 2016)Permalink