Descripteur
Termes IGN > mathématiques > statistique mathématique > régression > régression linéaire > auto-régression
auto-régression |
Documents disponibles dans cette catégorie (8)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Comparison of change and static state as the dependent variable for modeling urban growth / Yongjiu Feng in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : Comparison of change and static state as the dependent variable for modeling urban growth Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Rong Wang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6975 - 6998 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] auto-régression
[Termes IGN] automate cellulaire
[Termes IGN] Chine
[Termes IGN] croissance urbaine
[Termes IGN] distribution spatiale
[Termes IGN] utilisation du sol
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) To examine the effects of historical land-use change and static land-use state on the modeling, we established three cellular automata (CA) models using the spatial autoregressive model (SAR). The models are CASAR-Cha based on the change data, CASAR-Sta based on the start-state data, and CASAR-End based on the end-state data. The models that considered five different neighborhood sizes (from 3 × 3 to 11 × 11) were applied to simulate the urban growth of Jiaxing, China from 2008 to 2018, and predict the urban scenario to the year 2048. All three models can accurately reproduce the urban growth from 2008 to 2018, and the CASAR-End model performed best in calibration and validation. The differences in historical land data did affect the spatial distribution of the simulated urban patterns. The neighborhood size has a significant impact on the model's allocation ability, yet the appropriate size depends on the unique landscape context being studied. Numéro de notice : A2022-752 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959657 Date de publication en ligne : 02/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959657 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101744
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6975 - 6998[article]The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
[article]
Titre : The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events Type de document : Article/Communication Auteurs : Sidgley Camargo de Andrade, Auteur ; João Porto de Albuquerque, Auteur ; Camilo Restrepo-Estrada, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1140 - 1165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] auto-régression
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité spatiale
[Termes IGN] mobilité urbaine
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] Sao Paulo
[Termes IGN] TwitterRésumé : (auteur) Although it is acknowledged that urban inequalities can lead to biases in the production of social media data, there is a lack of studies which make an assessment of the effects of intra-urban movements in real-world urban analytics applications, based on social media. This study investigates the spatial heterogeneity of social media with regard to the regular intra-urban movements of residents by means of a case study of rainfall-related Twitter activity in São Paulo, Brazil. We apply a spatial autoregressive model that uses population and income as covariates and intra-urban mobility flows as spatial weights to explain the spatial distribution of the social response to rainfall events in Twitter vis-à-vis rainfall radar data. Results show high spatial heterogeneity in the response of social media to rainfall events, which is linked to intra-urban inequalities. Our model performance (R2=0.80) provides evidence that urban mobility flows and socio-economic indicators are significant factors to explain the spatial heterogeneity of thematic spatiotemporal patterns extracted from social media. Therefore, urban analytics research and practice should consider not only the influence of socio-economic profile of neighborhoods but also the spatial interaction introduced by intra-urban mobility flows to account for spatial heterogeneity when using social media data. Numéro de notice : A2022-405 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1957898 Date de publication en ligne : 03/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1957898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100717
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1140 - 1165[article]Predicting total electron content in ionosphere using vector autoregression model during geomagnetic storm / Sumitra Iyer in Journal of applied geodesy, vol 15 n° 4 (October 2021)
[article]
Titre : Predicting total electron content in ionosphere using vector autoregression model during geomagnetic storm Type de document : Article/Communication Auteurs : Sumitra Iyer, Auteur ; Alka Mahajan, Auteur Année de publication : 2021 Article en page(s) : pp 279 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] auto-régression
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] format RINEX
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] modèle ionosphérique
[Termes IGN] série temporelle
[Termes IGN] signal GPS
[Termes IGN] tempête magnétique
[Termes IGN] teneur totale en électrons
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The ionospheric total electron content (TEC) severely impacts the positional accuracy of a single frequency Global Positioning System (GPS) receiver at the equatorial latitudes. The ionosphere causes a frequency-dependent group delay in the GPS-ranging signals, which reduces the receiver’s accuracy. Further, the variations in TEC due to various space weather phenomena make the ionosphere’s behaviour nonhomogeneous and complex. Hence, developing an accurate forecast model that can track the dynamic behaviour of the ionosphere remains a challenge. However, advances in emerging data-driven algorithms have been found helpful in tracking non-stationary behavior in TEC. These models help forecast the delays in advance. The multivariate Vector Autoregression model (VAR) predicts the Ionospheric TEC in the proposed model. The prediction model uses input data compiled in real-time from the lag values of incoming TEC data and features extracted from TEC. The TEC is predicted in real-time and tested for different prediction intervals. The metrics – Mean Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used for testing and validating the accuracy of the model statistically. Testing the predicted output accuracy is also done with the dynamic time warping (DTW) algorithm by comparing it with the actual value obtained from the dual-frequency receiver. The model is tested for storm days of the year 2015 for Bangalore and Hyderabad stations and found to be reliable and accurate. A prediction interval of twenty-minute shows the highest accuracy with an error within 10 TECU for all the storm days. Numéro de notice : A2021-745 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0015 Date de publication en ligne : 23/06/2021 En ligne : https://doi.org/10.1515/jag-2021-0015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98717
in Journal of applied geodesy > vol 15 n° 4 (October 2021) . - pp 279 - 291[article]Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland / Mateusz Tomal in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
[article]
Titre : Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland Type de document : Article/Communication Auteurs : Mateusz Tomal, Auteur Année de publication : 2020 Article en page(s) : 20 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] auto-régression
[Termes IGN] bien immobilier
[Termes IGN] Cracovie (Pologne)
[Termes IGN] distribution spatiale
[Termes IGN] économétrie
[Termes IGN] évaluation foncière
[Termes IGN] gestion foncière
[Termes IGN] hétérogénéité spatiale
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] méthode des moindres carrés
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) The proportion of tenants will undoubtedly rise in Poland, where at present, the ownership housing model is very dominant. As a result, the rental housing market in Poland is currently under-researched in comparison with owner-occupancy. In order to narrow this research gap, this study attempts to identify the determinants affecting rental prices in Cracow. The latter were obtained from the internet platform otodom.pl using the web scraping technique. To identify rent determinants, ordinary least squares (OLS) regression and spatial econometric methods were used. In particular, traditional spatial autoregressive model (SAR) and spatial autoregressive geographically weighted regression (GWR-SAR) were employed, which made it possible to take into account the spatial heterogeneity of the parameters of determinants and the spatially changing spatial autocorrelation of housing rents. In-depth analysis of rent determinants using the GWR-SAR model exposed the complexity of the rental market in Cracow. Estimates of the above model revealed that many local markets can be identified in Cracow, with different factors shaping housing rents. However, one can identify some determinants that are ubiquitous for almost the entire city. This concerns mainly the variables describing the area of the flat and the age of the building. Moreover, the Monte Carlo test indicated that the spatial autoregressive parameter also changes significantly over space. Numéro de notice : A2020-314 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060346 Date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.3390/ijgi9060346 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95169
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 20 p.[article]Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors / Boris Kargoll in Journal of geodesy, vol 94 n° 5 (May 2020)
[article]
Titre : Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors Type de document : Article/Communication Auteurs : Boris Kargoll, Auteur ; Gaël Kermarrec, Auteur ; Hamza Alkhatib, Auteur ; Johannes Korte, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] analyse vectorielle
[Termes IGN] auto-régression
[Termes IGN] bruit blanc
[Termes IGN] corrélation croisée normalisée
[Termes IGN] erreur aléatoire
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle stochastique
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] station GPS
[Termes IGN] valeur aberranteRésumé : (auteur) The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297, 2018. https://doi.org/10.1007/s00190-017-1062-6), is extended to multivariate approaches. Multivariate models are used to describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are complementary in the sense that the former allows for group-specific degrees of freedom (df) of the t-distributions (thus, sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas the latter allows for such correlations but not for different dfs. Within the observation equations, nonlinear (differentiable) regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of stochastic model A) or the cofactor matrix (for stochastic model B), and the df(s). To enable the validation of the fitted VAR model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations. Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent Network (EPN). Numéro de notice : A2020-291 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01376-6 Date de publication en ligne : 10/05/2020 En ligne : https://doi.org/10.1007/s00190-020-01376-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95120
in Journal of geodesy > vol 94 n° 5 (May 2020)[article]Mining boundary effects in areally referenced spatial data using the Bayesian information criterion / Sudipto Banerjee in Geoinformatica, vol 15 n° 3 (July 2011)PermalinkSpatial autoregressive model for population estimation at the census block level using lidar-derived building volume information / F. Qiu in Cartography and Geographic Information Science, vol 37 n° 3 (July 2010)PermalinkEstimation et inférence du coefficient d'autorégression du modèle de Whittle sur un réseau d'interactions aléatoires faibles / D. Carillo in Revue internationale de géomatique, vol 17 n° 3-4 (septembre 2007 – février 2008)Permalink