Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Turquie > Bosphore, détroit du
Bosphore, détroit duVoir aussi |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Dimension reduction methods applied to coastline extraction on hyperspectral imagery / Ozan Arslan in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Dimension reduction methods applied to coastline extraction on hyperspectral imagery Type de document : Article/Communication Auteurs : Ozan Arslan, Auteur ; özer Akyürek, Auteur ; Sinasi Kaya, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 376 - 390 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] Bosphore, détroit du
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de contours
[Termes IGN] extraction
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Istanbul (Turquie)
[Termes IGN] littoral
[Termes IGN] rapport signal sur bruit
[Termes IGN] réduction
[Termes IGN] télédétection
[Termes IGN] trait de côteRésumé : (auteur) In this study, dimensionality reduction (DR) methods on a hyperspectral dataset to explore the influence on the process of extraction of coastlines were examined and performance of different DR algorithms on the detection of coastline in Bosphorus, Istanbul was investigated. Among these methods, principal component (PC) analysis, maximum noise fraction and independent component (IC) analysis were used in the experiments with the aim of comparing. The study was carried out using these well-known DR techniques on a real hyperspectral image, an Hyperion data set with 161 bands, in the course of the experiments. Three different classifiers (i.e. ML, SVM and neural network) were used for the classification of dimensionally reduced and original images to detect coastline in the region. The DR results were evaluated quantitatively and visually in order to determine the reduced dimensions of the image subsets. Findings show that there is no significant influence of using DR methods on the dataset on the detection of coastline. Numéro de notice : A2020-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520920 Date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520920 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94690
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 376 - 390[article]Monitoring and water pollution modelling of the Bosphorus by regression analysis using multitemporal Landsat-TM data / H. Gonca Coskun (2001)
Titre : Monitoring and water pollution modelling of the Bosphorus by regression analysis using multitemporal Landsat-TM data Type de document : Article/Communication Auteurs : H. Gonca Coskun, Auteur ; S. Ekercin, Auteur ; A. Oztopal, Auteur Editeur : Lisse et Amsterdam : Balkema (August Aimé) Année de publication : 2001 Conférence : EARSeL 2001, 21st international symposium, Observing our environment from space : news solutions for a new millennium 14/05/2001 16/05/2001 Paris France Importance : pp 275 - 279 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bosphore, détroit du
[Termes IGN] image Landsat
[Termes IGN] image multibande
[Termes IGN] polluant
[Termes IGN] pollution des mers
[Termes IGN] réflectance
[Termes IGN] surveillance écologique
[Termes IGN] turbidité océaniqueRésumé : (Auteur) Environmental pollution is among the most common problems of different nations as a global problem. Especially, water pollution is a continuous threat to surface water resources and transportation routes in the world. Istanbul Straight (Bosphorus) is a model for such a situation due to water passage from the Black Sea to the Mediterranean Sea. In fact, pollution sources of the Bosphorus originate from the wastage of many nations that have costal areas along the Black Sea and Danube River in addition to the population as well as industrial pollutants from the city itself. Pollution surface measurements are carried out concerning total suspended solids JSS), humic materials (HM), chemical oxygen demand (COD), poliaromatik hydrocarbons (PAH) and hydrodynamic conditions of water. On the other hand, digital multispectral Landsat-5 satellite data were recorded and co-registered for a portion of the Bosphorus. Relationships are sought between the water quality parameters and the reflectance values by the use of regression analysis. Although such an analysis has been carried out in the past during 1986 since then there are signs of significant water pollution increment in the Bosphorus. Therefore, this paper aims at the deduction of the most recent data analysis from 1997 in comparisons with earlier studies so as to make temporal decisions in addition to the spatial features. Adaptive parameter estimation in the regression analyses provides efficient computation in an economic manner. These observed reflectance values show a strong relationship with the water quality observation. The necessary values are provided in single pixel values for each band at the station point in the Bosphorus. Satellite data provide a useful index of TSS, HM and PAH. As the reflectance (in the turbidity area) in the longer red and near IR increases faster than the reflectance in shorter blue and green wavelengths, it can be seen that turbidity levels are positively related to reflectance. Numéro de notice : C2001-034 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=64942