Descripteur
Documents disponibles dans cette catégorie (273)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
[article]
Titre : Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon Type de document : Article/Communication Auteurs : Hermann Tagne, Auteur ; Arnaud Le Bris , Auteur ; David Monkam, Auteur ; Clément Mallet , Auteur Année de publication : 2022 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 673 - 680 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Cameroun
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] série temporelleRésumé : (auteur) Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolutions. These images are in particular of utter interest for Land-Cover (LC) mapping at large scales. LC maps can now be computed on a yearly basis at the scale of a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail. This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the Very High Resolution national topographic geodatabase. The ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic vegetation classes (five) which enables providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores are obtained (>94% in Overall Accuracy), allowing to provide a first step towards finer-grained map retrieval. Numéro de notice : A2022-426 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-3-2022-673-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-673-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100731
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 673 - 680[article]Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds / Michael Kölle in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds Type de document : Article/Communication Auteurs : Michael Kölle, Auteur ; Volker Walter, Auteur ; Uwe Soergel, Auteur Année de publication : 2022 Article en page(s) : pp 259 - 266 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] orthoimage couleur
[Termes IGN] production participative
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement de données localiséesRésumé : (auteur) The main bottleneck of machine learning systems, such as convolutional neural networks, is the availability of labeled training data. Hence, much effort (and thus cost) is caused by setting up proper training data sets. However, models trained on specific data sets often perform unsatisfactorily when used to derive predictions for another (yet related) data set. We aim to overcome this problem by employing active learning to iteratively adapt an existing classifier to another domain. Precisely, we are concerned with semantic segmentation of 3D point clouds of multiple epochs. We first establish a Random Forest classifier for the first epoch of our data set and adapt it for successful prediction to two more temporally disjoint point clouds of the same but extended area. The point clouds, which are part of the newly introduced Hessigheim 3D benchmark data set, incorporate different characteristics with respect to the acquisition date and sensor configuration. We demonstrate that our workflow for domain adaptation is designed in such a way that it i) offers the possibility to greatly reduce labeling effort compared to a passive learning baseline or to an active learning baseline trained from scratch, if the domain gap is small enough and ii) at least does not cause more expenses (compared to a newly initialized active learning loop), if the domain gap is severe. The latter is especially beneficial in scenarios where the similarity of two different domains is hard to assess. Numéro de notice : A2022-435 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-259-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-259-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100743
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 259 - 266[article]Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 37 n° 9 ([15/05/2022])
[article]
Titre : Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Emrehan Kutlug Sahin, Auteur Année de publication : 2022 Article en page(s) : pp 2441 - 2465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] cartographie thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] effondrement de terrain
[Termes IGN] Extreme Gradient Machine
[Termes IGN] khi carré
[Termes IGN] TurquieRésumé : (auteur) The aim of the study is to compare four recent gradient boosting algorithms named as Gradient Boosting Machine (GBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) for modelling landslide susceptibility (LS). In the first step of the study, the geodatabase including landslide inventory map and landslide conditioning factors was constructed. In the second step, chi-square (CHI) statistic-based feature selection (FS) technique was utilized to compute the importance of the landslide causative factors. In the third step, tree-based ensemble learning algorithms were applied to predict the potential distribution of landslide susceptibility. Also, the prediction performance of ensemble methods was compared to that of Random Forest (RF) ensemble method. Finally, the prediction capabilities of the methods were assessed using overall accuracy (Acc), area under the receiver operating characteristic curve (AUC), kappa index, root mean square error (RMSE), and F score measures. In order to further evaluation, the McNemar's test was utilized to assess statistical significance in the differences between the four gradient boosting models. The accuracy results indicated that the CatBoost model had the highest prediction capability (Acc= 0.8503 and AUC= 0.8975), followed by the XGBoost (Acc= 0.8336 and AUC= 0.8860), the LightGBM (Acc= 0.8244 and AUC= 0.8796) and the GBM (Acc= 0.8080 and AUC= 0.8685). On the other hand, the estimated accuracy measures considered in this study showed that the RF method had the lowest prediction capability of compared the others. Although the individual performances of the methods were found to be acceptable level, the CatBoost method showed the superior performance compared to others with respect to the AUC and Acc values estimated in this study. The results of the study confirmed that the relatively new ensemble learning techniques were efficient and robust for producing LS maps and furthermore, it is probably that these algorithms will be preferred more often in the future studies due to their robustness. Numéro de notice : A2022-564 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1831623 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1831623 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101244
in Geocarto international > vol 37 n° 9 [15/05/2022] . - pp 2441 - 2465[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022091 RAB Revue Centre de documentation En réserve L003 Disponible Efficient convolutional neural architecture search for LiDAR DSM classification / Aili Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
[article]
Titre : Efficient convolutional neural architecture search for LiDAR DSM classification Type de document : Article/Communication Auteurs : Aili Wang, Auteur ; Dong Xue, Auteur ; Haibin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703317 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] précision de la classification
[Termes IGN] semis de pointsRésumé : (auteur) Light detection and ranging (LiDAR) data provide rich elevation information, so it plays an irreplaceable role in ground object classification. Recently, convolutional neural networks (CNNs) have shown excellent performance in LiDAR digital surface models (DSMs) classification. However, the architecture of CNN model relies heavily on manual design, so it has great limitations. In addition, different sensors capture LiDAR datasets with different properties, so the model should be designed to suit for different datasets, which further increases the workload of architecture design. Therefore, this article proposes a method of automatic design of LiDAR DSM classification model. First, attention mechanism is introduced into search space to improve the feature extraction capability of the model. Then, a gradient-based search strategy is used to obtain the optimal architecture from this search space. Second, a learning rate adjustment strategy is proposed to reduce the time spent in the search stage and evaluation stage to improve the classification accuracy of the model. Finally, a regularization scheme is introduced to enhance the robustness of the model and avoid overfitting. Experimental results on three public LiDAR datasets (Bayview Park, Recology, and Houston) obtained from different sensors show that the proposed neural architecture search method achieves the impressive classification performance compared to several state-of-the-art classification methods and improves the classification accuracy under the condition of limited training samples. Numéro de notice : A2022-408 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3171520 Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3171520 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100742
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 5 (May 2022) . - n° 5703317[article]Fusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Fusion of optical, radar and waveform LiDAR observations for land cover classification Type de document : Article/Communication Auteurs : Huiran Jin, Auteur ; Giorgos Mountrakis, Auteur Année de publication : 2022 Article en page(s) : pp 171 - 190 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion d'images
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-TM
[Termes IGN] image multitemporelle
[Termes IGN] occupation du solRésumé : (Auteur) Land cover is an integral component for characterizing anthropogenic activity and promoting sustainable land use. Mapping distribution and coverage of land cover at broad spatiotemporal scales largely relies on classification of remotely sensed data. Although recently multi-source data fusion has been playing an increasingly active role in land cover classification, our intensive review of current studies shows that the integration of optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR) observations has not been thoroughly evaluated. In this research, we bridged this gap by i) summarizing related fusion studies and assessing their reported accuracy improvements, and ii) conducting our own case study where for the first time fusion of optical, radar and waveform LiDAR observations and the associated improvements in classification accuracy are assessed using data collected by spaceborne or appropriately simulated platforms in the LiDAR case. Multitemporal Landsat-5/Thematic Mapper (TM) and Advanced Land Observing Satellite-1/ Phased Array type L-band SAR (ALOS-1/PALSAR) imagery acquired in the Central New York (CNY) region close to the collection of airborne waveform LVIS (Land, Vegetation, and Ice Sensor) data were examined. Classification was conducted using a random forest algorithm and different feature sets in terms of sensor and seasonality as input variables. Results indicate that the combined spectral, scattering and vertical structural information provided the maximum discriminative capability among different land cover types, giving rise to the highest overall accuracy of 83% (2–19% and 9–35% superior to the two-sensor and single-sensor scenarios with overall accuracies of 64–81% and 48–74%, respectively). Greater improvement was achieved when combining multitemporal Landsat images with LVIS-derived canopy height metrics as opposed to PALSAR features, suggesting that LVIS contributed more useful thematic information complementary to spectral data and beneficial to the classification task, especially for vegetation classes. With the Global Ecosystem Dynamics Investigation (GEDI), a recently launched LiDAR instrument of similar properties to the LVIS sensor now operating onboard the International Space Station (ISS), it is our hope that this research will act as a literature summary and offer guidelines for further applications of multi-date and multi-type remotely sensed data fusion for improved land cover classification. Numéro de notice : A2022-228 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.010 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100214
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 171 - 190[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)PermalinkDetecting individuals' spatial familiarity with urban environments using eye movement data / Hua Liao in Computers, Environment and Urban Systems, vol 93 (April 2022)PermalinkRecent changes in the climate-growth response of European larch (Larix decidua Mill.) in the Polish Sudetes / Malgorzata Danek in Trees, vol 36 n° 2 (April 2022)PermalinkSpecies level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 ([01/04/2022])PermalinkThe integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)PermalinkUrban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)PermalinkClassification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkEvaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkExploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)PermalinkLand surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data / Jun Lu in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkDynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkMapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data / Sébastien Dujardin in Landscape and Urban Planning, vol 218 (February 2022)PermalinkPlanning of commercial thinnings using machine learning and airborne Lidar data / Tauri Arumäe in Forests, vol 13 n° 2 (February 2022)PermalinkSiamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])Permalink3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)PermalinkVariable selection for estimating individual tree height using genetic algorithm and random forest / Evandro Nunes Miranda in Forest ecology and management, vol 504 (January-15 2022)PermalinkAbove-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data / Fardin Moradi in Annals of forest research, vol 65 n° 1 (January - June 2022)PermalinkAn assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkAn extended patch-based cellular automaton to simulate horizontal and vertical urban growth under the shared socioeconomic pathways / Yimin Chen in Computers, Environment and Urban Systems, vol 91 (January 2022)Permalink