Descripteur
Documents disponibles dans cette catégorie (273)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Investigating the application of artificial intelligence for earthquake prediction in Terengganu / Suzlyana Marhain in Natural Hazards, vol 108 n° 1 (August 2021)
[article]
Titre : Investigating the application of artificial intelligence for earthquake prediction in Terengganu Type de document : Article/Communication Auteurs : Suzlyana Marhain, Auteur ; Ali Najah Ahmed, Auteur ; Muhammad Ary Murti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 977 - 999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] apprentissage automatique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] courbe de Pearson
[Termes IGN] données météorologiques
[Termes IGN] intelligence artificielle
[Termes IGN] Malaisie
[Termes IGN] prévention des risques
[Termes IGN] régression multivariée par spline adaptative
[Termes IGN] séisme
[Termes IGN] surveillance géologique
[Termes IGN] tsunamiRésumé : (auteur) Numéro de notice : A2021-599 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1007/s11069-021-04716-7 Date de publication en ligne : 04/04/2021 En ligne : https://doi.org/10.1007/s11069-021-04716-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98232
in Natural Hazards > vol 108 n° 1 (August 2021) . - pp 977 - 999[article]Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning / Kim Lowell in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning Type de document : Article/Communication Auteurs : Kim Lowell, Auteur ; Brian Calder, Auteur ; Anthony Lyons, Auteur Année de publication : 2021 Article en page(s) : pp 1592 - 1610 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] bathymétrie laser
[Termes IGN] données lidar
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] hydrographie
[Termes IGN] lever bathymétrique
[Termes IGN] semis de pointsRésumé : (auteur) The goal of this work was to evaluate if routinely collected but seldom used airborne lidar metadata – ‘point attribute data’ (PAD) – analyzed using machine learning/artificial intelligence can improve extraction of shallow-water (less than 20 m) bathymetry from lidar point clouds. Extreme gradient boosting (XGB) models relating PAD to an existing bathymetry/not bathymetry classification were fitted and evaluated for four areas near the Florida Keys. The PAD examined include ‘pulse specific’ information such as the return intensity and PAD describing flight path consistency. The R2 values for the XGB models were between 0.34 and 0.74. Global classification accuracies were above 80% although this reflected a sometimes extreme Bathy/NotBathy imbalance that inflated global accuracy. This imbalance was mitigated by employing a probability decision threshold (PDT) that equalizes the true positive (Bathy) and true negative (NotBathy) rates. It was concluded that 1) the strength of the bathymetric signal in the PAD should be sufficient to increase accuracy of density-based lidar point cloud bathymetry extraction methods and 2) ML can successfully model the relationship between the PAD and the Bathy/NotBathy classification. A method is also presented to examine the spatial and feature-space distribution of errors that will facilitate quality assurance and continuous improvement. Numéro de notice : A2021-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1867147 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/13658816.2020.1867147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98061
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1592 - 1610[article]Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture / Pashrant K. Srivastava in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
[article]
Titre : Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture Type de document : Article/Communication Auteurs : Pashrant K. Srivastava, Auteur ; George P. Petropoulos, Auteur ; Rajendra Prasad, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 507 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] Angleterre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable to a variety of applications, such as weather and climate, natural disasters, agricultural water management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several approaches for the estimation of SMD are implemented herein, using algorithms such as Random Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression. The results show that for SMD estimation, the RF algorithm performed best as compared to the GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study findings can provide important assistance towards developing the accuracy and applicability of remote sensing-based products for operational use. Numéro de notice : A2021-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080507 Date de publication en ligne : 27/07/2021 En ligne : https://doi.org/10.3390/ijgi10080507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98220
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 507[article]Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data / Xiaofang Sun in Geocarto international, vol 36 n° 14 ([01/08/2021])
[article]
Titre : Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data Type de document : Article/Communication Auteurs : Xiaofang Sun, Auteur ; Bai Li, Auteur ; Zhengping Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1549 - 1564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carbone
[Termes IGN] carte de la végétation
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] Geoscience Laser Altimeter System
[Termes IGN] image Terra-MODIS
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Kiangsi (Chine)
[Termes IGN] krigeage
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) An accurate estimation of forest aboveground biomass (AGB) is important for carbon accounting. In this study, six methods, including partial least squares regression, regression kriging, k-nearest neighbour, support vector machines, random forest and high accuracy surface modelling (HASM), were used to simulate forest AGB. Forest AGB was mapped by combining Geoscience Laser Altimeter System data, optical imagery and field inventory data. The Normalized Difference Vegetation Index (NDVI) and Wide Dynamic Range Vegetation Index (WDRVI0.2) of September and October, which had a stronger correlation with forest AGB than that of the peak growing season, were selected as predictor variables, along with tree cover percentage and three GLAS-derived parameters. The results of the different methods were evaluated. The HASM model had the best modelling accuracy (small MAE, RMSE, NRMSE, RMSV and NMSE and large R2). A forest AGB map of the study area was generated using the optimal model. Numéro de notice : A2021-555 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1655799 Date de publication en ligne : 28/08/2019 En ligne : https://doi.org/10.1080/10106049.2019.1655799 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98108
in Geocarto international > vol 36 n° 14 [01/08/2021] . - pp 1549 - 1564[article]DEM- and GIS-based analysis of soil erosion depth using machine learning / Kieu Anh Nguyen in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : DEM- and GIS-based analysis of soil erosion depth using machine learning Type de document : Article/Communication Auteurs : Kieu Anh Nguyen, Auteur ; Walter Chen, Auteur Année de publication : 2021 Article en page(s) : n° 452 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage automatique
[Termes IGN] bassin hydrographique
[Termes IGN] carte de profondeur
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] érosion
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] morphométrie
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil erosion is a form of land degradation. It is the process of moving surface soil with the action of external forces such as wind or water. Tillage also causes soil erosion. As outlined by the United Nations Sustainable Development Goal (UN SDG) #15, it is a global challenge to “combat desertification, and halt and reverse land degradation and halt biodiversity loss.” In order to advance this goal, we studied and modeled the soil erosion depth of a typical watershed in Taiwan using 26 morphometric factors derived from a digital elevation model (DEM) and 10 environmental factors. Feature selection was performed using the Boruta algorithm to determine 15 factors with confirmed importance and one tentative factor. Then, machine learning models, including the random forest (RF) and gradient boosting machine (GBM), were used to create prediction models validated by erosion pin measurements. The results show that GBM, coupled with 15 important factors (confirmed), achieved the best result in the context of root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE). Finally, we present the maps of soil erosion depth using the two machine learning models. The maps are useful for conservation planning and mitigating future soil erosion. Numéro de notice : A2021-551 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070452 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.3390/ijgi10070452 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98074
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 452[article]Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data / Yueting Wang in Ecological indicators, vol 126 (July 2021)PermalinkExtracting Shallow-Water Bathymetry from Lidar point clouds using pulse attribute data: Merging density-based and machine learning approaches / Kim Lowell in Marine geodesy, vol 44 n° 4 (July 2021)PermalinkImplementing a mass valuation application on interoperable land valuation data model designed as an extension of the national GDI / Arif Cagdas Aydinoglu in Survey review, Vol 53 n° 379 (July 2021)PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)PermalinkUsing machine learning to map Western Australian landscapes for mineral exploration / Thomas Albrecht in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkFast weakly supervised detection of railway-related infrastructures in lidar acquisitions / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)PermalinkForest cover mapping and Pinus species classification using very high-resolution satellite images and random forest / Laura Alonso-Martinez in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)PermalinkApplication of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkCloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)PermalinkA combined drought monitoring index based on multi-sensor remote sensing data and machine learning / Hongzhu Han in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkEvaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkFractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method / Duanyang Liu in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkRapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkAutomatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning / Malarvizhi Arulraj in Remote sensing of environment, vol 257 (May 2021)PermalinkIntegrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj region of Iran / Hossein Shafizadeh-Moghadam in Computers, Environment and Urban Systems, vol 87 (May 2021)PermalinkMapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image / Salma Benmokhtar in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)PermalinkThe delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])PermalinkAnti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 6 ([01/04/2021])PermalinkA novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery / Ting Bai in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)PermalinkStudy on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm / Fengfan Wang in Computers & geosciences, vol 149 (April 2021)Permalink