ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 101Paru le : 01/03/2015 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2015031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierEvaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa Type de document : Article/Communication Auteurs : Timothy Dube, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2015 Article en page(s) : pp 36 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique subsaharienne
[Termes IGN] analyse comparative
[Termes IGN] biomasse
[Termes IGN] estimation statistique
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image à moyenne résolution
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] indice de végétation
[Termes IGN] Pinus taedaRésumé : (auteur) Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge. Numéro de notice : A2015-468 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.11.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.11.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77170
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 36 - 46[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia / Adelia M.O. Sousa in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia Type de document : Article/Communication Auteurs : Adelia M.O. Sousa, Auteur ; Ana Cristina Goncalves, Auteur ; Paulo Mesquita, Auteur ; José R. Marques da Silva, Auteur Année de publication : 2015 Article en page(s) : pp 69 - 79 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] image à très haute résolution
[Termes IGN] image Quickbird
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Portugal
[Termes IGN] Quercus ilexRésumé : (auteur) Forest biomass has had a growing importance in the world economy as a global strategic reserve, due to applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. Current techniques used for forest inventory are usually time consuming and expensive. Thus, there is an urgent need to develop reliable, low cost methods that can be used for forest biomass estimation and monitoring. This study uses new techniques to process high spatial resolution satellite images (0.70 m) in order to assess and monitor forest biomass. Multi-resolution segmentation method and object oriented classification are used to obtain the area of tree canopy horizontal projection for Quercus rotundifolia. Forest inventory allows for calculation of tree and canopy horizontal projection and biomass, the latter with allometric functions. The two data sets are used to develop linear functions to assess above ground biomass, with crown horizontal projection as an independent variable. The functions for the cumulative values, both for inventory and satellite data, for a prediction error equal or smaller than the Portuguese national forest inventory (7%), correspond to stand areas of 0.5 ha, which include most of the Q.rotundifolia stands. Numéro de notice : A2015-469 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.12.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.12.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77171
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 69 - 79[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm / Oumer S. Ahmed in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm Type de document : Article/Communication Auteurs : Oumer S. Ahmed, Auteur ; Steven E. Franklin, Auteur ; Michael A. Wulder, Auteur ; Joanne C. White, Auteur Année de publication : 2015 Article en page(s) : pp 89 - 101 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] composition d'un peuplement forestier
[Termes IGN] couvert forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat
[Termes IGN] régression multiple
[Termes IGN] série temporelle
[Termes IGN] Vancouver (Colombie britannique)Résumé : (auteur) Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = −0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = −0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm. Numéro de notice : A2015-470 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.11.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.11.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77172
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 89 - 101[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Effects of LiDAR point density and landscape context on estimates of urban forest biomass / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Effects of LiDAR point density and landscape context on estimates of urban forest biomass Type de document : Article/Communication Auteurs : Kunwar K. Singh, Auteur ; Gang Chen, Auteur ; James B. McCarter, Auteur ; Ross K. Meentemeyer, Auteur Année de publication : 2015 Article en page(s) : pp 310 - 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] composition d'un peuplement forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] forêt urbaine
[Termes IGN] régression multipleRésumé : (auteur) Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density. Numéro de notice : A2015-471 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.12.021 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.12.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77173
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 310 - 322[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Flexible building primitives for 3D building modeling / B. Xiong in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Flexible building primitives for 3D building modeling Type de document : Article/Communication Auteurs : B. Xiong, Auteur ; M. Jancosek, Auteur ; Sander J. Oude Elberink, Auteur ; M. George Vosselman, Auteur Année de publication : 2015 Article en page(s) : pp 275 - 290 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bord décollé (toit)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] méthode des moindres carrés
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] primitive géométrique
[Termes IGN] programmation par contraintes
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] toitRésumé : (auteur) 3D building models, being the main part of a digital city scene, are essential to all applications related to human activities in urban environments. The development of range sensors and Multi-View Stereo (MVS) technology facilitates our ability to automatically reconstruct level of details 2 (LoD2) models of buildings. However, because of the high complexity of building structures, no fully automatic system is currently available for producing building models. In order to simplify the problem, a lot of research focuses only on particular buildings shapes, and relatively simple ones. In this paper, we analyze the property of topology graphs of object surfaces, and find that roof topology graphs have three basic elements: loose nodes, loose edges, and minimum cycles. These elements have interesting physical meanings: a loose node is a building with one roof face; a loose edge is a ridge line between two roof faces whose end points are not defined by a third roof face; and a minimum cycle represents a roof corner of a building. Building primitives, which introduce building shape knowledge, are defined according to these three basic elements. Then all buildings can be represented by combining such building primitives. The building parts are searched according to the predefined building primitives, reconstructed independently, and grouped into a complete building model in a CSG-style. The shape knowledge is inferred via the building primitives and used as constraints to improve the building models, in which all roof parameters are simultaneously adjusted. Experiments show the flexibility of building primitives in both lidar point cloud and stereo point cloud. Numéro de notice : A2015-474 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.01.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.01.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77182
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 275 - 290[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible