Descripteur
Documents disponibles dans cette catégorie (36)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data / Haoyi Xiong in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data Type de document : Article/Communication Auteurs : Haoyi Xiong, Auteur ; Xun Zhou, Auteur ; David A. Bennett, Auteur Année de publication : 2023 Article en page(s) : pp 1157-1179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] détection d'anomalie
[Termes IGN] données spatiotemporelles
[Termes IGN] événement
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (auteur) Traffic congestion on a road segment typically begins as a small-scale spatiotemporal event that can then propagate throughout a road network and produce large-scale disruptions to a transportation system. In current techniques for the analysis of network flow, data is often aggregated to relatively large (e.g. 5 min) discrete time steps that obscure the small-scale spatiotemporal interactions that drive larger-scale dynamics. We propose a new method that handles fine-grained data to better capture those dynamics. Propagation patterns of traffic congestion are represented as spatiotemporally connected events. Each event is captured as a time series at the temporal resolution of the available trajectory data and at the spatial resolution of the network edge. The spatiotemporal propagation patterns of traffic congestion are captured using Dynamic Time Warping and represented as a set of directed acyclic graphs of spatiotemporal events. Results from this method are compared to an existing method using fine-grained data derived from an agent-based model of traffic simulation. Our method outperforms the existing method. Our method also successfully detects congestion propagation patterns that were reported by media news using sparse real-world data derived from taxis. Numéro de notice : A2023-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2023.2178653 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103177
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1157-1179[article]Machine learning models applied to a GNSS sensor network for automated bridge anomaly detection / Nicolas Manzini in Journal of structural engineering, Vol 148 n° 11 (November 2022)
[article]
Titre : Machine learning models applied to a GNSS sensor network for automated bridge anomaly detection Type de document : Article/Communication Auteurs : Nicolas Manzini, Auteur ; André Orcesi, Auteur ; Christian Thom , Auteur ; Marc-Antoine Brossault, Auteur ; Serge Botton , Auteur ; Miguel Ortiz, Auteur ; John Dumoulin, Auteur Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 3469 Note générale : bibliographie
EN ATTENTE DU DOCUMENTLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Topographie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection d'anomalie
[Termes IGN] ouvrage d'art
[Termes IGN] pont
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance d'ouvrage
[Termes IGN] topométrie de précisionRésumé : (auteur) Structural health monitoring (SHM) based on global navigation satellite systems (GNSS) is an interesting solution to provide absolute positions at different locations of a structure in a global reference frame. In particular, low-cost GNSS stations for large-scale bridge monitoring have gained increasing attention these last years because recent experiments showed the ability to achieve a subcentimeter accuracy for continuous monitoring with adequate combinations of antennas and receivers. Technical solutions now allow displacement monitoring of long bridges with a cost-effective deployment of GNSS sensing networks. In particular, the redundancy of observations within the GNSS network with various levels of correlations between the GNSS time series makes such monitoring solution a good candidate for anomaly detection based on machine learning models, using several predictive models for each sensor (based on environmental conditions, or other sensors as input data). This strategy is investigated in this paper based on GNSS time series, and an anomaly indicator is proposed to detect and locate anomalous structural behavior. The proposed concepts are applied to a cable-stayed bridge for illustration, and the comparison between multiple tools highlights recurrent neural networks (RNN) as an effective regression tool. Coupling this tool with the proposed anomaly detection strategy enables one to identify and localize both real and simulated anomalies in the considered data set. Numéro de notice : A2022-672 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1061/(ASCE)ST.1943-541X.0003469 En ligne : https://doi.org/10.1061/(ASCE)ST.1943-541X.0003469 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101615
in Journal of structural engineering > Vol 148 n° 11 (November 2022) . - n° 3469[article]
Titre : Attention-based vandalism detection in OpenStreetMap Type de document : Article/Communication Auteurs : Nicolas Tempelmeier, Auteur ; Elena Demidova, Auteur Editeur : New York [Etats-Unis] : Association for computing machinery ACM Année de publication : 2022 Conférence : WWW 2022, ACM Web Conference 2022 25/04/2022 29/04/2022 Lyon online France Proceedings ACM Importance : pp 643 - 651 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection d'anomalie
[Termes IGN] fiabilité des données
[Termes IGN] historique des données
[Termes IGN] OpenStreetMapMots-clés libres : vandalisme Résumé : (auteur) OpenStreetMap (OSM), a collaborative, crowdsourced Web map, is a unique source of openly available worldwide map data, increasingly adopted in Web applications. Vandalism detection is a critical task to support trust and maintain OSM transparency. This task is remarkably challenging due to the large scale of the dataset, the sheer number of contributors, various vandalism forms, and the lack of annotated data. This paper presents Ovid - a novel attention-based method for vandalism detection in OSM. Ovid relies on a novel neural architecture that adopts a multi-head attention mechanism to summarize information indicating vandalism from OSM changesets effectively. To facilitate automated vandalism detection, we introduce a set of original features that capture changeset, user, and edit information. Furthermore, we extract a dataset of real-world vandalism incidents from the OSM edit history for the first time and provide this dataset as open data. Our evaluation conducted on real-world vandalism data demonstrates the effectiveness of Ovid. Numéro de notice : C2022-008 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Communication DOI : 10.1145/3485447.3512224 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1145/3485447.3512224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100493
Titre : Détection des micro et macroplastiques à partir de mesures spectrales Type de document : Mémoire Auteurs : Martin Cubaud, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 82 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de fin d'études, cycle des ingénieurs ENSG 3ème annéeLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse de données
[Termes IGN] apprentissage automatique
[Termes IGN] bande infrarouge
[Termes IGN] déchet
[Termes IGN] dégradation de l'environnement
[Termes IGN] détection d'anomalie
[Termes IGN] détection de cible
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] matière plastique
[Termes IGN] plateau continental
[Termes IGN] pollution
[Termes IGN] spectrométrieIndex. décimale : MPT Mémoires de fin d'études du Master Méthodes physiques en télédétection Résumé : (Auteur) La pollution plastique pose d’importants problèmes pour les organismes vivants, et nécessite donc d’être surveillée de manière fiable et efficace. Le présent rapport de stage compare différentes méthodes pour détecter et identifier la nature de déchets plastiques à partir d’images hyperspectrales dans l’infrarouge court (SWIR, entre 1 et 2,5 µm) prises par drone au-dessus de surfaces continentales : détection d’anomalies, indices spectraux, détection de cibles et apprentissage automatique. Il s’intéresse également à la quantification de l’abondance sub-pixellique des plastiques, et notamment des microplastiques d’une taille inférieure à 5 mm. Note de contenu : Introduction
1. Analyse des données
1.1 Présentation des données
1.2 Analyse et comparaison de spectres
2. Méthodologie 19
2.1 Réduction de dimension
2.2 Détection des plastiques
2.3 Démélange spectral
2.4 Métriques d’évaluation
3. Résultats
3.1 Détection des plastiques
3.2 Quantification de l’abondance sub-pixellique de plastique
4. Discussion
4.1 Détection et identification
4.2 Identification des polymères
4.3 Quantification de l’abondance sub-pixellique de plastique
ConclusionNuméro de notice : 26936 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de fin d'études IT Organisme de stage : Office National d’Etudes et de Recherches Aérospatiales ONERA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102060 Documents numériques
en open access
Détection des micro et macroplastiques à partir de mesures spectrales - pdf auteurAdobe Acrobat PDF Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021. An automated machine learning-based approach for structural novelty detection based on SHM / Nicolas Manzini (2022)
Titre de série : Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021 Titre : An automated machine learning-based approach for structural novelty detection based on SHM Type de document : Article/Communication Auteurs : Nicolas Manzini, Auteur ; Ndeye Mar, Auteur ; Franziska Schmidt, Auteur ; Jean-François Bercher, Auteur ; André Orcesi, Auteur ; Pierre Marchand, Auteur ; Julien Gazeaux , Auteur ; Christian Thom , Auteur Editeur : Springer Nature Année de publication : 2022 Collection : Lecture Notes in Civil Engineering num. 200 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : EUROSTRUCT 2021, 1st Conference of the European Association on Quality Control of Bridges and Structures 29/08/2021 01/09/2021 Padoue Italie Proceedings Springer Importance : pp 1180 - 1189 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] détection d'anomalie
[Termes IGN] ouvrage d'art
[Termes IGN] pont
[Termes IGN] régression multiple
[Termes IGN] réseau de capteurs
[Termes IGN] résidu
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) One major goal of structural health monitoring (SHM) is to detect, and possibly locate, quantify or predict damage on structures. Without detailed knowledge of structural mechanical behavior, data analysis is a complex task and operational monitoring is often limited to the use of more or less arbitrary thresholds. Data-driven techniques, which rely on a statistical analysis of data, have encountered a growing interest over the past two decades. In parallel, SHM is now increasingly considered for several types of structures with the development of low-cost sensors and IoT. In this context, this paper proposes an approach based on multiple automated machine learning-based models for novelty detection and location in monitoring data. This study focuses on the monitoring of large structures with multiple sensors. For each sensor, multiple regression models (based on neural networks) are generated using the same training set, with various input data: internal temperature, environmental conditions, or data from other sensors deployed on the structure. Anomalies are then identified in the dataset based on residuals between model outputs and in situ data. For a given sensor, residuals of all models are then compiled to produce an anomaly indicator. This paper presents some of the results obtained on data acquired from the monitoring of a large concrete bridge. Some anomalies are simulated and added to the dataset to demonstrate the detection performance of the proposed approach. Numéro de notice : C2021-086 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-030-91877-4_134 Date de publication en ligne : 12/12/2021 En ligne : https://doi.org/10.1007/978-3-030-91877-4_134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99378 An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data / Van-Tho Nguyen in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkInitialization methods of convolutional neural networks for detection of image manipulations / Ivan Castillo Camacho (2021)PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)PermalinkUn été brûlant sous l’oeil des satellites / Laurent Polidori in Géomètre, n° 2173 (octobre 2019)PermalinkSea level prediction in the Yellow Sea from satellite altimetry with a combined least squares-neural network approach / Jian Zhao in Marine geodesy, vol 42 n° 4 (July 2019)PermalinkThe necessary yet complex evaluation of 3D city models: a semantic approach / Oussama Ennafii (2019)PermalinkLe vandalisme dans l’information géographique volontaire, détection de l’IG volontaire vandalisée : du concept à la détection non supervisée d’anomalie / Quy Thy Truong in Revue internationale de géomatique, vol 29 n° 1 (janvier - mars 2019)PermalinkIntra-annual phenology for detecting understory plant invasion in urban forests / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)PermalinkTowards vandalism detection in OpenStreetMap through a data driven approach [short paper] / Quy Thy Truong (2018)PermalinkBand subset selection for anomaly detection in hyperspectral imagery / Lin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)Permalink