Descripteur
Documents disponibles dans cette catégorie (21)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Efficient occluded road extraction from high-resolution remote sensing imagery / Dejun Feng in Remote sensing, vol 13 n° 24 (December-2 2021)
[article]
Titre : Efficient occluded road extraction from high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Dejun Feng, Auteur ; Xingyu Shen, Auteur ; Yakun Xie, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de partie cachée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] reconstruction de routeRésumé : (auteur) Road extraction is important for road network renewal, intelligent transportation systems and smart cities. This paper proposes an effective method to improve road extraction accuracy and reconstruct the broken road lines caused by ground occlusion. Firstly, an attention mechanism-based convolution neural network is established to enhance feature extraction capability. By highlighting key areas and restraining interference features, the road extraction accuracy is improved. Secondly, for the common broken road problem in the extraction results, a heuristic method based on connected domain analysis is proposed to reconstruct the road. An experiment is carried out on a benchmark dataset to prove the effectiveness of this method, and the result is compared with that of several famous deep learning models including FCN8s, SegNet, U-Net and D-Linknet. The comparison shows that this model increases the IOU value and the F1 score by 3.35–12.8% and 2.41–9.8%, respectively. Additionally, the result proves the proposed method is effective at extracting roads from occluded areas. Numéro de notice : A2021-889 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13244974 Date de publication en ligne : 07/12/2021 En ligne : https://doi.org/10.3390/rs13244974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99243
in Remote sensing > vol 13 n° 24 (December-2 2021) . - n° 4974[article]Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de partie cachée
[Termes IGN] espace urbain
[Termes IGN] image aérienne oblique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction de route
[Termes IGN] réseau routier
[Termes IGN] texture d'image
[Termes IGN] véhicule automobileRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects / Linyuan Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects Type de document : Article/Communication Auteurs : Linyuan Li, Auteur ; Xihan Mu, Auteur ; Maxime Soma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3547 - 3566 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de partie cachée
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] itération
[Termes IGN] semis de pointsRésumé : (auteur) Occlusion effect, an inherent problem of terrestrial laser scanning (TLS) measurements, limits the potential of TLS data in tree attribute estimation. Multiple scans seek to mitigate this effect to provide enhanced scan completeness. However, the numbers and locations of the scans (i.e., the scan design) are usually determined via a subjective assessment of the tree density, spatial patterns of trees, and attributes to be derived. These could cause suboptimal scan completeness and limit tree attribute estimation. This study proposed an iterative-mode scan design to minimize the occlusion effect. First, we introduced a PoTo index based on visibility analysis to evaluate how many trees can be scanned from a location and to select effective candidates for the optimal TLS location. Second, we introduced a cumulative degree of ring closure (CDRC) to quantify the scan completeness for each candidate and determine the optimal TLS location. The TLS data sets of virtual forests with field-measured and synthetic plot parameter settings were simulated according to iterative- and regular-mode designs by using a Heidelberg light detection and ranging (LiDAR) Operations Simulator (HELIOS). The results demonstrated that an iterative-mode design can improve the scan completeness of trees compared to the regular-mode design. The tree attribute (diameter at breast height (DBH), tree height, stem curve, and crown volume) estimates of the iterative-mode design were less erroneous than those of the regular-mode design (e.g., the root-mean-square error (RMSE) could decrease the stem curve estimation by 38% and the crown volume estimation by 15%). This study suggests that the iterative-mode design can obtain an improved quality of the TLS data, especially for dense stands. Numéro de notice : A2021-288 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3018643 Date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018643 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97397
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3547 - 3566[article]Fusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Fusion of sparse model based on randomly erased image for SAR occluded target recognition Type de document : Article/Communication Auteurs : Zhiqiang He, Auteur ; Huaitie Xiao, Auteur ; Chao Gao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7829 - 7844 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] cible cachée
[Termes IGN] détection de cible
[Termes IGN] détection de partie cachée
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (auteur) The recognition of partially occluded targets is a difficult problem in the field of synthetic aperture radar (SAR) target recognition. To eliminate the effect of occlusion, the intuitive idea is to determine the exact location and the size of the occluded area. However, this is very difficult, even impossible in practice. In order to avoid this difficulty and to improve the recognition performance for the partially occluded target, a fusion strategy of the sparse representation (SR) model based on randomly erased images is proposed to recognize the partially occluded target. The proposed method randomly erases some areas many times in both the test samples and the training samples. The erased training samples in each erasure are used to sparsely represent the corresponding erased test sample. Finally, all the SR results are fused to recognize the test sample. The proposed method utilizes random erasure to eliminate the possible occluded region. In addition, this method uses the fusion strategy to overcome under-erasing of the occluded region and erroneous erasure of the unoccluded region. The key parameter of the proposed method is the erasure ratio only. Although the erasure is random, the recognition performance of the method is relatively stable. Therefore, the method can eliminate the influence of occlusion without determining the details of occlusion. The experimental results show that the proposed method is significantly better than the state-of-the-art methods in the case of occlusion. Additionally, the recognition performance of the proposed method is similar to some comparison methods in the case of no occlusion. Numéro de notice : A2020-680 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984577 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984577 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96204
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7829 - 7844[article]Improved depth estimation for occlusion scenes using a light-field camera / Changkun Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
[article]
Titre : Improved depth estimation for occlusion scenes using a light-field camera Type de document : Article/Communication Auteurs : Changkun Yang, Auteur ; Zhaoqin Liu, Auteur ; Kaichang Di, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 443-456 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] caméra numérique
[Termes IGN] classification pixellaire
[Termes IGN] détection de partie cachée
[Termes IGN] disparité
[Termes IGN] effet de profondeur cinétique
[Termes IGN] lentille
[Termes IGN] méthode de centrage
[Termes IGN] rayonnement lumineux
[Termes IGN] reconstruction 3DRésumé : (Auteur) With the development of light-field imaging technology, depth estimation using light-field cameras has become a hot topic in recent years. Even through many algorithms have achieved good performance for depth estimation using light-field cameras, removing the influence of occlusion, especially multi-occlusion, is still a challenging task. The photo-consistency assumption does not hold in the presence of occlusions, which makes most depth estimation of light-field imaging unreliable. In this article, a novel method to handle complex occlusion in depth estimation of light-field imaging is proposed. The method can effectively identify occluded pixels using a refocusing algorithm, accurately select unoccluded views using the adaptive unoccluded-view identification algorithm, and then improve the depth estimation by computing the cost volumes in the unoccluded views. Experimental results demonstrate the advantages of our proposed algorithm compared with conventional state-of-the art algorithms on both synthetic and real light-field data sets. Numéro de notice : A2020-383 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.7.443 Date de publication en ligne : 01/07/2020 En ligne : https://doi.org/10.14358/PERS.86.7.443 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95430
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 7 (July 2020) . - pp 443-456[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020071 SL Revue Centre de documentation Revues en salle Disponible Point clouds for direct pedestrian pathfinding in urban environments / Jesus Balado in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)PermalinkPermalinkRange-image: Incorporating sensor topology for lidar point cloud processing / Pierre Biasutti in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)PermalinkIntegrated image matching and segmentation for 3D surface reconstruction in urban areas / Lei Ye in Photogrammetric Engineering & Remote Sensing, PERS, Vol 84 n° 3 (March 2018)PermalinkAn adaptive weighted tensor completion method for the recovery of remote sensing images with missing data / Michael Kwok-Po Ng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)PermalinkBuilding occlusion detection from ghost images / Guoqing Zhou in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)PermalinkDynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence / Chi Chen in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)PermalinkObject-oriented semantic labelling of spectral–spatial LiDAR point cloud for urban land cover classification and buildings detection / Anandakumar M. Ramiya in Geocarto international, vol 31 n° 1 - 2 (January - February 2016)PermalinkEtude d'opportunité de développement sur le marché de la topographie des réseaux / Soufiane Laqbayli (2013)PermalinkTrees detection from laser point clouds acquired in dense urban areas by a mobile mapping system / Fabrice Monnier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol I-3 (2012)Permalink