Descripteur
Documents disponibles dans cette catégorie (16)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery Type de document : Article/Communication Auteurs : Patrick Ebel, Auteur ; Andrea Meraner, Auteur ; Michael Schmitt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5866 - 5878 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection des nuages
[Termes IGN] données multicapteurs
[Termes IGN] image Sentinel-MSI
[Termes IGN] nuage
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) The majority of optical observations acquired via spaceborne Earth imagery are affected by clouds. While there is numerous prior work on reconstructing cloud-covered information, previous studies are, oftentimes, confined to narrowly defined regions of interest, raising the question of whether an approach can generalize to a diverse set of observations acquired at variable cloud coverage or in different regions and seasons. We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches and evaluate two recently proposed performance metrics of image quality and diversity. Our data set is the first publically available to contain a global sample of coregistered radar and optical observations, cloudy and cloud-free. Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extreme and evaluate its performance on our proposed data set. Finally, we demonstrate the superiority of training models on real over synthetic data, underlining the need for a carefully curated data set of real observations. To facilitate future research, our data set is made available online. Numéro de notice : A2021-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3024744 Date de publication en ligne : 02/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024744 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97980
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5866 - 5878[article]Multiscale cloud detection in remote sensing images using a dual convolutional neural network / Markku Luotamo in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Multiscale cloud detection in remote sensing images using a dual convolutional neural network Type de document : Article/Communication Auteurs : Markku Luotamo, Auteur ; Sari Metsämäki, Auteur ; Arto Klami, Auteur Année de publication : 2021 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection des nuages
[Termes IGN] granularité d'image
[Termes IGN] image Sentinel-MSI
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Semantic segmentation by convolutional neural networks (CNN) has advanced the state of the art in pixel-level classification of remote sensing images. However, processing large images typically requires analyzing the image in small patches, and hence, features that have a large spatial extent still cause challenges in tasks, such as cloud masking. To support a wider scale of spatial features while simultaneously reducing computational requirements for large satellite images, we propose an architecture of two cascaded CNN model components successively processing undersampled and full-resolution images. The first component distinguishes between patches in the inner cloud area from patches at the cloud’s boundary region. For the cloud-ambiguous edge patches requiring further segmentation, the framework then delegates computation to a fine-grained model component. We apply the architecture to a cloud detection data set of complete Sentinel-2 multispectral images, approximately annotated for minimal false negatives in a land-use application. On this specific task and data, we achieve a 16% relative improvement in pixel accuracy over a CNN baseline based on patching. Numéro de notice : A2021-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3015272 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3015272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97781
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp[article]Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques Type de document : Article/Communication Auteurs : Miao Tian, Auteur ; Hao Chen, Auteur ; Guanghui Liu, Auteur Année de publication : 2021 Article en page(s) : pp 2781 - 2793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection des nuages
[Termes IGN] dioxyde de carbone
[Termes IGN] image infrarouge
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] régression linéaire
[Termes IGN] vapeur d'eauRésumé : (auteur) Accurate cloud detection using infrared (IR) data is very challenging due to the limitations and uncertainties from many aspects in the satellite IR remote sensing. This article proposes an end-to-end cloud detection method for the Cross-track IR Sounder (CrIS) using machine learning (ML) techniques. The brightness temperatures from paired CrIS channels in the longwave and midwave water vapor bands and the longwave and shortwave CO 2 bands are used. After obtaining the linear regression coefficients for each of the selected channel pairs, a complete set of CrIS full spectral resolution (FSR) cloud detection index (FCDI) is derived from the temperature difference between the regression and observation for each channel pair. It is shown that FCDI captures cloud location and structure well by comparing with the cloud products (CPs) from the Visible IR Imaging Radiometer Suite (VIIRS). After collocating FCDI with VIIRS CP, ML techniques such as the extreme learning machine, support vector machine, and multilayer perceptron are used to train the collocated FCDIs for cloud detection. Simulation results show that the accuracy of FCDI cloud detection is slightly above 80%. Moreover, the results encourage the use of water vapor bands in FCDI, in addition to CO 2 bands. Numéro de notice : A2021-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020120 Date de publication en ligne : 18/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020120 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97387
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2781 - 2793[article]A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] altitude
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection des nuages
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image Gaofen
[Termes IGN] information géographique
[Termes IGN] latitude
[Termes IGN] longitude
[Termes IGN] modèle statistique
[Termes IGN] neige
[Termes IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 Date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 87 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines / Rogério Galante Negri in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines Type de document : Article/Communication Auteurs : Rogério Galante Negri, Auteur ; Alejandro C. Frery, Auteur ; Wallace Casaca, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2863 - 2876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse de sensibilité
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] détection des nuages
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] processus stochastique
[Termes IGN] zone homogèneRésumé : (auteur) Change detection is a topic of great interest in remote sensing. A good similarity metric to compute the variations among the images is the key to high-quality change detection. However, most existing approaches rely on the fixed threshold values or the user-provided ground truth in order to be effective. The inability to deal with artificial objects such as clouds and shadows is a significant difficulty for many change-detection methods. We propose a new unsupervised change-detection framework to address those critical points. The notion of homogeneous regions is introduced together with a set of geometric operations and statistic-based criteria to characterize and distinguish formally the change and nonchange areas in a pair of remote sensing images. Moreover, a robust and statistically well-posed family of stochastic distances is also proposed, which allows comparing the probability distributions of different regions/objects in the images. These stochastic measures are then used to train a support-vector-machine-based approach in order to detect the change/nonchange areas. Three study cases using the images acquired with different sensors are given in order to compare the proposed method with other well-known unsupervised methods. Numéro de notice : A2021-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009483 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009483 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97389
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2863 - 2876[article]PermalinkCloud detection by luminance and inter-band parallax analysis for pushbroom satellite imagers / Tristan Dagobert in IPOL Journal, Image Processing On Line, vol 10 (2020)PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)PermalinkA novel algorithm for differentiating cloud from snow sheets using Landsat 8 OLI imagery / Tingting Wu in Advances in space research, vol 64 n°1 (1 July 2019)PermalinkTesting, analysis and improvement of FGI-NLS Sentinel-2 data processing chain for land use applications / Emile Blettery (2018)PermalinkA fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems / Xiao-Yong Zhuge in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)PermalinkAutomatic detection of clouds and shadows using high resolution satellite image time series / Nicolas Champion (2016)PermalinkA class of cloud detection algorithms based on a MAP-MRF approach in space and time / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)PermalinkQuality assessment of cloud-top height estimates from satellite IR radiances using the CALIPSO Lidar / Sabatino, Di Michele in IEEE Transactions on geoscience and remote sensing, vol 51 n° 4 Tome 2 (April 2013)PermalinkAutomatic cloud detection from multi-temporal satellite images: towards the use of Pléiades time series / Nicolas Champion (2012)Permalink