Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Combining land cover products using a minimum divergence and a Bayesian data fusion approach / Sarah Gengler in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
[article]
Titre : Combining land cover products using a minimum divergence and a Bayesian data fusion approach Type de document : Article/Communication Auteurs : Sarah Gengler, Auteur ; Patrick Bogaert, Auteur Année de publication : 2018 Article en page(s) : pp 806 - 826 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Belgique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification bayesienne
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] entropie maximale
[Termes IGN] entropie relative
[Termes IGN] fusion de données
[Termes IGN] source de donnéesRésumé : (Auteur) Land cover mapping plays an important role for a wide spectrum of applications that are ranging from climate modeling to food security. However, it is a common case that several and partially conflicting land cover products are available at the same time over a same area, where each product suffers from specific limitations and lack of accuracy. In order to take advantage of the best features of each product while at the same time attenuating their respective weaknesses, this paper is proposing a methodology that allows the user to combine these products together based on a general framework involving maximum entropy/minimum divergence principles, Bayesian data fusion and Bayesian updating. First, information brought by each land cover product is coded in terms of inequality constraints so that a first estimation of their quality can be computed based on a maximum entropy/minimum divergence principle. Information from these various land cover products can then be fused afterwards in a Bayesian framework, leading to a single map with an associated measure of uncertainty. Finally, it is shown how the additional information brought by control data can help improving this fused map through a Bayesian updating procedure. The first part of the paper is briefly presenting the most important theoretical results, while the second part is illustrating the use of this suggested approach for a specific area in Belgium, where five different land cover products are at hand. The benefits and limitations of this approach are finally discussed by the light of the results for this case study. Numéro de notice : A2018-045 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1413577 En ligne : https://doi.org/10.1080/13658816.2017.1413577 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89267
in International journal of geographical information science IJGIS > vol 32 n° 3-4 (March - April 2018) . - pp 806 - 826[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2018022 RAB Revue Centre de documentation En réserve L003 Disponible 079-2018021 RAB Revue Centre de documentation En réserve L003 Disponible Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2 / François Messner in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
[article]
Titre : Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2 Type de document : Article/Communication Auteurs : François Messner, Auteur ; Jeannine Corbonnois, Auteur ; Fanny Stella Tchitouo Ntenzou, Auteur Année de publication : 2018 Article en page(s) : pp 19 - 37 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] arbre de décision
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] ensachage
[Termes IGN] entropie
[Termes IGN] image Worldview
[Termes IGN] modèle orienté objet
[Termes IGN] précision de la classification
[Termes IGN] Sarthe (72)Résumé : (Auteur) L'évaluation de la précision des cartes thématiques produites par télédétection est une finalité de tout processus de classification modélisant le paysage. Reposant traditionnellement sur la matrice de confusion, elle peut être complétée par des méthodes alternatives plus à même de prendre en compte le biais relatif à la sélection des échantillons d'apprentissage, ainsi que par l'emploi d'approches représentant spatialement l'incertitude inhérente aux classifications. Une telle démarche est adoptée dans cet article, en évaluant la précision à l'aide des estimateurs du Maximum de Probabilité a Posteriori, puis en déterminant, pour chaque unité de carte, des mesures d'incertitude : l'entropie a quadratique, la divergence de Kullback-Leibler et un indice de concordance qualitatif. Ces traitements sont analysés et comparés selon 3 classifieurs, Random Forest, C5.0 et l'Analyse Discriminante Linéaire et selon 4 stratégies de classification : classifieurs seuls, classifieurs avec procédure de bagging, classifieurs avec procédure d'apprentissage actifs et classifieurs avec procédure d'apprentissage actif et de bagging. Les résultats obtenus soulignent la complémentarité des estimateurs de précision pour mettre en évidence un biais dans l'évaluation de la précision ou dans la détermination des probabilités a posteriori, et justifie la prise en considération des indices d'incertitude comme source d'informations sur la distribution spatiale des erreurs de cartographie. Numéro de notice : A2018-092 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.310 Date de publication en ligne : 19/04/2018 En ligne : https://doi.org/10.52638/rfpt.2018.310 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89502
in Revue Française de Photogrammétrie et de Télédétection > n° 216 (février 2018) . - pp 19 - 37[article]