Descripteur
Documents disponibles dans cette catégorie (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : SAR image speckle reduction based on nonconvex hybrid total variation model Type de document : Article/Communication Auteurs : Yuli Sun, Auteur ; Lin Lei, Auteur ; Dongdong Guan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1231 - 1249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] artefact
[Termes IGN] chatoiement
[Termes IGN] détection de contours
[Termes IGN] distribution de Fisher
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] régularisation d'image
[Termes IGN] variableRésumé : (auteur) Speckle noise inherent in synthetic aperture radar (SAR) images seriously affects the visual effect and brings great difficulties to the postprocessing of the SAR image. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized to reduce the speckle. However, the strong scatters in SAR image with radiometry several orders of magnitude larger than their surrounding regions limit the effectiveness of TV regularization. Meanwhile, the ℓ1 -norm first-order TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant, and it usually underestimates high-amplitude components of image gradient as the ℓ1 -norm uniformly penalizes the amplitude. To overcome these shortcomings, a new hybrid variation model, called Fisher–Tippett (FT) distribution- ℓp -norm first-and second-order hybrid TVs (HTpVs), is proposed to reduce the speckle after removing the strong scatters. Especially, the FT-HTpV inherits the advantages of the distribution based data fidelity term, the nonconvex regularization, and the higher order TV regularization. Therefore, it can effectively remove the speckle while preserving point scatters and edges and reducing staircase artifacts well. To efficiently solve the nonconvex minimization problem, an iterative framework with a nonmonotone-accelerated proximal gradient (nmAPG) method and a matrix-vector acceleration strategy are used. Extensive experiments on both the simulated and real SAR images demonstrate the effectiveness of the proposed method. Numéro de notice : A2021-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002561 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96924
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1231 - 1249[article]Bayesian transfer learning for object detection in optical remote sensing images / Changsheng Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Bayesian transfer learning for object detection in optical remote sensing images Type de document : Article/Communication Auteurs : Changsheng Zhou, Auteur ; Jiangshe Zhang, Auteur ; Junmin Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7705 - 7719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] détection d'objet
[Termes IGN] distribution de Fisher
[Termes IGN] jeu de données localisées
[Termes IGN] théorème de BayesRésumé : (auteur) In the literature of object detection in optical remote sensing images, a popular pipeline is first modifying an off-the-shelf deep neural network, then initializing the modified network by pretrained weights on a source data set, and finally fine-tuning the network on a target data set. The procedure works well in practice but might not make full use of underlying knowledge implied by pretrained weights. In this article, we propose a novel method, referred to as Fisher regularization, for efficient knowledge transferring. Based on Bayes’ theorem, the method stores underlying knowledge into a Fisher information matrix and fine-tunes parameters based on the knowledge. The proposed method would not introduce extra parameters and is less sensitive to hyperparameters than classical weight decay. Experiments on NWPUVHR-10 and DOTA data sets show that the proposed method is effective and works well with different object detectors. Numéro de notice : A2020-679 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2983201 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2983201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96182
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7705 - 7719[article]Ship detection in SAR images via local contrast of Fisher vectors / Xueqian Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Ship detection in SAR images via local contrast of Fisher vectors Type de document : Article/Communication Auteurs : Xueqian Wang, Auteur ; Gang Li, Auteur ; Xiao-Ping Zhang, Auteur ; You He, Auteur Année de publication : 2020 Article en page(s) : pp 6467 - 6479 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] contraste local
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] distribution de Fisher
[Termes IGN] fouillis d'échos
[Termes IGN] image radar moirée
[Termes IGN] navire
[Termes IGN] processus gaussien
[Termes IGN] rapport signal sur bruit
[Termes IGN] superpixelRésumé : (auteur) Existing superpixel-based detection algorithms for ship targets in synthetic aperture radar (SAR) images are often derived from the local contrast of intensities (i.e., the local contrast of the first-order information of superpixels) leading to deteriorating performance in low signal-to-clutter ratio (SCR) cases due to the low contrast between the intensities of targets and the clutter. In this article, we propose a new superpixel-based detector to improve the performance of ship target detection in SAR images via the local contrast of fisher vectors (LCFVs). The new LCFV-based detector exploits multiorder features of the superpixels based on the Gaussian mixture model (GMM) and accordingly improves the discrimination capability between the ship targets and the sea clutter, especially in low SCR cases. Experimental results demonstrate that the proposed LCFV-based detection algorithm provides better detection performance than the commonly used detection algorithms. Numéro de notice : A2020-530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976880 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976880 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95713
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6467 - 6479[article]Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])
[article]
Titre : Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 214 - 1232 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biodiversité
[Termes IGN] carte bathymétrique
[Termes IGN] Chine, mer de
[Termes IGN] classification barycentrique
[Termes IGN] classification hypercube
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] distribution de Fisher
[Termes IGN] fond marin
[Termes IGN] image multibande
[Termes IGN] Malaisie
[Termes IGN] précision de la classification
[Termes IGN] récif corallien
[Termes IGN] réflectance spectraleRésumé : (auteur) Remote sensing has potential in studies of the benthic habitat and extracting the reflectance from the data of multispectral sensors, but traditional image classification techniques cannot provide coral habitat maps with adequate accuracy. This study tested five traditional and three ensemble classification techniques on QuickBird for mapping the benthic composition of coral reefs on the Lang Tengah Island (Malaysia). The common techniques, minimum distance, maximum likelihood, K-nearest neighbour, Fisher and parallelepiped techniques were compared with ensemble classifiers, such as majority voting (MV), simple averaging, and mode combination. The per-class accuracy of the habitat detection improved in the ensemble classifiers; in particular, the MV classifier achieved 95%, 65%, 75% and 95% accuracies for coral, sparse coral, coral rubble and sand, respectively. Ensembles increased the accuracy of the habitat mapping classification by 28%, relative to conventional techniques. Thus, the ensemble techniques can be preferred over the traditional for benthic habitat mapping. Numéro de notice : A2020-459 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1557263 Date de publication en ligne : 12/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1557263 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95566
in Geocarto international > vol 35 n° 11 [01/08/2020] . - pp 214 - 1232[article]Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data / Michalis A. Savelonas in Computer Vision and image understanding, vol 171 (June 2018)
[article]
Titre : Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data Type de document : Article/Communication Auteurs : Michalis A. Savelonas, Auteur ; Ioannis Pratikakis, Auteur ; Theoharis Theoharis, Auteur ; Georgios Thanellas, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse spatiale
[Termes IGN] classification barycentrique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] codage
[Termes IGN] détection de piéton
[Termes IGN] discrétisation spatiale
[Termes IGN] distribution de Fisher
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] image à basse résolution
[Termes IGN] reconnaissance de formesRésumé : (auteur) Range-based pedestrian recognition is instrumental towards the development of autonomous driving and driving assistance systems. This work introduces encoding methods for pedestrian recognition, based on statistical shape analysis of 3D LIDAR data. The proposed approach has two variants, based on the encoding of local shape descriptors either in a spatially agnostic or spatially sensitive fashion. The latter method derives more detailed cues, by enriching the ‘gross’ information reflected by overall statistics of local shape descriptors, with ‘fine-grained’ information reflected by statistics associated with spatial clusters. Experiments on artificial LIDAR datasets, which include challenging samples, as well as on a large scale dataset of real LIDAR data, lead to the conclusion that both variants of the proposed approach (i) obtain high recognition accuracy, (ii) are robust against low-resolution sampling, (iii) are robust against increasing distance, and (iv) are robust against non-standard shapes and poses. On the other hand, the spatially-sensitive variant is more robust against partial occlusion and bad clustering. Numéro de notice : A2018-586 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cviu.2018.06.001 Date de publication en ligne : 15/06/2018 En ligne : https://www.sciencedirect.com/science/article/pii/S1077314218300766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92439
in Computer Vision and image understanding > vol 171 (June 2018) . - pp 1 - 9[article]Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 32 n° 9 (September 2017)PermalinkA cost-effective semisupervised classifier approach with kernels / M. Murat Dundar in IEEE Transactions on geoscience and remote sensing, vol 42 n° 1 (January 2004)Permalink