Descripteur
Documents disponibles dans cette catégorie (50)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Where am I now? modelling disorientation in pan-scalar maps / Guillaume Touya in ISPRS International journal of geo-information, vol 12 n° 2 (February 2023)
[article]
Titre : Where am I now? modelling disorientation in pan-scalar maps Type de document : Article/Communication Auteurs : Guillaume Touya , Auteur ; Maieul Gruget , Auteur ; Ian Muehlenhaus, Auteur Année de publication : 2023 Article en page(s) : n° 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cognition
[Termes IGN] données multiéchelles
[Termes IGN] échelle cartographique
[Termes IGN] interaction homme-machine
[Termes IGN] lecture de carte
[Termes IGN] représentation mentale
[Termes IGN] représentation mentale spatiale
[Termes IGN] représentation multiple
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Disorientation is a common feeling for all users of zoomable multi-scale maps, even for those with good orientation and spatial skills. We make the assumption that this problem is mainly due to the desert fog effect, documented in human–computer interaction within multi-scale zoomable environments. Starting with a collection of reported experiences of disorientation, this paper explores this notion from the spatial cognition, philosophical and human–computer interaction perspectives and proposes a model of disorientation in the exploration of multi-scale maps. We argue that disorientation is a problem of reconciliation between the current map view and the mental map of the user, where landmarks visible on the map or memorised in the mental map play a key role. The causes for failed reconciliation are discussed and illustrated by our collected experiences of disorientation. Numéro de notice : A2023-130 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12020062 En ligne : https://doi.org/10.3390/ijgi12020062 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102585
in ISPRS International journal of geo-information > vol 12 n° 2 (February 2023) . - n° 62[article]GA-Net: A geometry prior assisted neural network for road extraction / Xin Chen in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : GA-Net: A geometry prior assisted neural network for road extraction Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Qun Sun, Auteur ; Wenyue Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103004 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données multiéchelles
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] jeu de données
[Termes IGN] Massachusetts (Etats-Unis)Résumé : (auteur) With geospatial intelligence research developing rapidly, automatic road extraction is becoming a fundamental and challenging task. Due to the special geometric structure and spectral information of road networks, existing methods suffer from incomplete and fractured results. In this work, a novel road extraction convolutional neural network, incorporating the road boundary details and road junction information via a dual-branch multi-task structure, is proposed to learn synergistic feature representations and strengthen road connectivity. Firstly, a BiFPN-based feature aggregation module is utilised to bridge the semantic gap between low-level and high-level feature maps, allowing multi-scale spatial details to be fully fused. Secondly, the boundary auxiliary branch, using a U-shaped network with a spatial-channel attention module, captures residential information for the backbone to enhance the subtleties of road edges. Thirdly, the node inferring branch models the road junction position jointly with the road surface, aiming to strengthen the topology structure and reduce the fragmented road segments. We perform experiments on three diverse road datasets, namely the DeepGlobe dataset, Massachusetts dataset, and SpaceNet dataset. The results demonstrate that our model shows an overall performance improvement over some SOTA algorithms and the IoU indicator achieves 3.86%, 0.79%, and 1.71% improvements over Unet on the three datasets, respectively. Numéro de notice : A2022-785 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103004 En ligne : https://doi.org/10.1016/j.jag.2022.103004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101888
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103004[article]Fast local adaptive multiscale image matching algorithm for remote sensing image correlation / Niccolò Dematteis in Computers & geosciences, vol 159 (February 2022)
[article]
Titre : Fast local adaptive multiscale image matching algorithm for remote sensing image correlation Type de document : Article/Communication Auteurs : Niccolò Dematteis, Auteur ; Daniele Giordan, Auteur ; Bruno Crippa, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] données multiéchelles
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] image Sentinel-MSI
[Termes IGN] implémentation (informatique)
[Termes IGN] Matlab
[Termes IGN] PatagonieRésumé : (auteur) Various studies have shown that image correlation calculated in the space domain outperforms frequency-based methods. However, such an approach usually requires great computational efforts, making it challenging to adopt for surveying fast moving processes like glaciers, particularly over wide areas. We present a local adaptive multiscale image matching algorithm (LAMMA), which repeatedly applies image correlation on grids of increasing spatial resolution and adapts the size of the interrogation area according to the local range of displacements. LAMMA allows reducing the number of calculi of several orders of magnitude and limits the occurrence of displacement outliers. We show an example of LAMMA application on Sentinel-2 images to measure glaciers flow of the Southern Patagonian Icefield, where LAMMA's runtime was comparable to that of frequency-based correlation. LAMMA's Matlab code is freely available on GitHub. Numéro de notice : A2022-094 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104988 Date de publication en ligne : 19/11/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104988 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99528
in Computers & geosciences > vol 159 (February 2022) . - n° 104988[article]An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
[article]
Titre : An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web Type de document : Article/Communication Auteurs : Abdulkadir Memduhoglu, Auteur ; Melih Basaraner, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement géométrique
[Termes IGN] approche participative
[Termes IGN] bâtiment
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multiéchelles
[Termes IGN] Istanbul (Turquie)
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] SWRL
[Termes IGN] web des données
[Termes IGN] web sémantique
[Termes IGN] zone urbaineRésumé : (auteur) The advent of Web 2.0 has emerged abundant but often unstructured user-generated georeferenced data, such as those from Volunteered Geographic Information (VGI) initiatives. In many cases, these data can be considered as complementary to the authoritative geospatial data. With the increasing availability of multi-source geospatial data, the efforts for geospatial data integration have gained momentum, aiming at gathering maximum information to answer sophisticated questions that cannot be answered using a single data source. Although there are various approaches employed for this purpose with different degrees of success, semantic web methods and tools have not been tested sufficiently in this scope, particularly for multi-scale urban building data integration and enrichment. Attempting to fill this gap, in this study, multi-source and multi-scale urban building data were integrated with a geometric matching method based on the overlapping area, then a geospatial ontology was developed to define multi-scale representations and detailed cardinality relations of the building features. Finally, some features from the geospatial ontology were then linked to popular knowledge bases such as DBpedia and YAGO. For the exploitation on the web, query and visualization processes were demonstrated using sample questions. The semantic web enabled to model complex cardinality of relations between the features from three different building data sets using inferencing and Semantic Web Rule Language (SWRL). The study showed that integrating different geospatial data sets as a knowledge base can facilitate answering sophisticated questions from different users. Numéro de notice : A2022-016 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1952108 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1080/15230406.2021.1952108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99147
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 1 - 17[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)
[article]
Titre : Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space Type de document : Article/Communication Auteurs : Min Wu, Auteur ; Xin Jin, Auteur ; Qian Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1707 - 1729 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste de couleurs
[Termes IGN] données multiéchelles
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] niveau de gris (image)
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images. This paper proposes a new method for coloring remote sensing images based on deep convolution generation adversarial network. The adopted generator model is a symmetrical structure using the principle of auto-encoder, and a multi-scale convolutional module is specially designed to introduce into the generator model. Thus, the proposed generator can enable the whole model to retain more image features in the process of up-sampling and down-sampling. Meanwhile, the discriminator uses residual neural network 18 that can compete with the generator, so that the generator and discriminator can effectively optimize each other. In the proposed method, the color space transformation technique is first utilized to convert remote sensing images from RGB to YUV. Then, the Y channel (a gray-level image) is used as the input of the neural network model to predict UV channels. Finally, the predicted UV channels are concatenated with the original Y channel as a whole YUV that is then transformed into RGB space to get the final color image. Experiments are conducted to test the performance of different image colorization methods, and the results show that the proposed method has good performance in both visual quality and objective indexes on the colorization of remote sensing image. Numéro de notice : A2021-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01933-2 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s00371-020-01933-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98018
in The Visual Computer > vol 37 n° 7 (July 2021) . - pp 1707 - 1729[article]Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkElevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)PermalinkExploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)PermalinkDesigning multi-scale maps: lessons learned from existing practices / Marion Dumont in International journal of cartography, Vol 6 n° 1 (March 2020)PermalinkPermalinkPermalinkProgressive visualization of complex 3D models over the internet / Jing Chen in Transactions in GIS, vol 20 n° 6 (December 2016)PermalinkThe impact of land use/land cover scale on modelling urban ecosystem services / Darren R. Grafius in Landscape ecology, vol 31 n° 7 (September 2016)PermalinkAdding intermediate representations in a multi-scale map to enable a smooth zooming / Marion Dumont (2015)PermalinkManaging Germany's big imagery data / Mladen Stojic in GEO: Geoconnexion international, vol 13 n° 2 (february 2014)Permalink