IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 53 n° 7Paru le : 01/07/2015 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-2015071 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierImpact of diurnal variation in vegetation water content on radar backscatter from maize during water stress / Tim Van Emmerik in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress Type de document : Article/Communication Auteurs : Tim Van Emmerik, Auteur ; Susan C. Steele-Dunne, Auteur ; Jasmeet Judge, Auteur ; Nick Van De Giesen, Auteur Année de publication : 2015 Article en page(s) : pp 3855 - 3869 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image radar
[Termes IGN] maïs (céréale)
[Termes IGN] teneur en eau de la végétation
[Termes IGN] végétationRésumé : (Auteur) Microwave backscatter from vegetated surfaces is influenced by vegetation structure and vegetation water content (VWC), which varies with meteorological conditions and moisture in the root zone. Radar backscatter observations are used for many vegetation and soil moisture monitoring applications under the assumption that VWC is constant on short timescales. This research aims to understand how backscatter over agricultural canopies changes in response to diurnal differences in VWC due to water stress. A standard water-cloud model and a two-layer water-cloud model for maize were used to simulate the influence of the observed variations in bulk/leaf/stalk VWC and soil moisture on the various contributions to total backscatter at a range of frequencies, polarizations, and incidence angles. The bulk VWC and leaf VWC were found to change up to 30% and 40%, respectively, on a diurnal basis during water stress and may have a significant effect on radar backscatter. Total backscatter time series are presented to illustrate the simulated diurnal difference in backscatter for different radar frequencies, polarizations, and incidence angles. Results show that backscatter is very sensitive to variations in VWC during water stress, particularly at large incidence angles and higher frequencies. The diurnal variation in total backscatter was dominated by variations in leaf water content, with simulated diurnal differences of up to 4 dB in X- through Ku-bands (8.6-35 GHz) . This study highlights a potential source of error in current vegetation and soil monitoring applications and provides insights into the potential use for radar to detect variations in VWC due to water stress. Numéro de notice : A2015-314 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2386142 En ligne : https://doi.org/10.1109/TGRS.2014.2386142 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76561
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3855 - 3869[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Documents numériques
en open access
A2015-314_Impact of diurnal variation in vegetation water contentHTML text data (RFC 1866) Hyperspectral and multispectral image fusion based on a sparse representation / Qi Wei in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Hyperspectral and multispectral image fusion based on a sparse representation Type de document : Article/Communication Auteurs : Qi Wei, Auteur ; José Bioucas-Dias, Auteur ; Nicolas Dobigeon, Auteur ; Jean-Yves Tourneret, Auteur Année de publication : 2015 Article en page(s) : pp 3658 - 3668 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] décomposition d'image
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] optimisation (mathématiques)
[Termes IGN] problème inverse
[Termes IGN] représentation parcimonieuseRésumé : (Résumé) This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods. Numéro de notice : A2015-315 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2381272 En ligne : https://doi.org/10.1109/TGRS.2014.2381272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76564
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3658 - 3668[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Local binary patterns and extreme learning machine for hyperspectral imagery classification / Wei Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Local binary patterns and extreme learning machine for hyperspectral imagery classification Type de document : Article/Communication Auteurs : Wei Li, Auteur ; Chen Chen, Auteur ; Hongjun Su, Auteur ; Qian Du, Auteur Année de publication : 2015 Article en page(s) : pp 3681 - 3693 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification spectrale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] texture d'imageRésumé : (Auteur) It is of great interest in exploiting texture information for classification of hyperspectral imagery (HSI) at high spatial resolution. In this paper, a classification paradigm to exploit rich texture information of HSI is proposed. The proposed framework employs local binary patterns (LBPs) to extract local image features, such as edges, corners, and spots. Two levels of fusion (i.e., feature-level fusion and decision-level fusion) are applied to the extracted LBP features along with global Gabor features and original spectral features, where feature-level fusion involves concatenation of multiple features before the pattern classification process while decision-level fusion performs on probability outputs of each individual classification pipeline and soft-decision fusion rule is adopted to merge results from the classifier ensemble. Moreover, the efficient extreme learning machine with a very simple structure is employed as the classifier. Experimental results on several HSI data sets demonstrate that the proposed framework is superior to some traditional alternatives. Numéro de notice : A2015-316 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2381602 En ligne : https://doi.org/10.1109/TGRS.2014.2381602 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76566
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3681 - 3693[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible A novel negative abundance‐oriented hyperspectral unmixing algorithm / Rubén Marrero in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : A novel negative abundance‐oriented hyperspectral unmixing algorithm Type de document : Article/Communication Auteurs : Rubén Marrero, Auteur ; Sebastian Lopez, Auteur ; Gustavo Callicó, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3772 - 3790 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] propagation d'erreur
[Termes IGN] variabilitéRésumé : (Auteur) Spectral unmixing is a popular technique for analyzing remotely sensed hyperspectral data sets with subpixel precision. Over the last few years, many algorithms have been developed for each of the main processing steps involved in spectral unmixing (SU) under the LMM assumption: 1) estimation of the number of endmembers; 2) identification of the spectral signatures of the endmembers; and 3) estimation of the abundance of endmembers in the scene. Although this general processing chain has proven to be effective for unmixing certain types of hyperspectral images, it also has some drawbacks. The first one comes from the fact that the output of each stage is the input of the following one, which favors the propagation of errors within the unmixing chain. A second problem is the huge variability of the results obtained when estimating the number of endmembers of a hyperspectral scene with different state-of-the-art algorithms, which influences the rest of the process. A third issue is the computational complexity of the whole process. To address the aforementioned issues, this paper develops a novel negative abundance-oriented SU algorithm that covers, for the first time in the literature, the main steps involved in traditional hyperspectral unmixing chains. The proposed algorithm can also be easily adapted to a scenario in which the number of endmembers is known in advance and two additional variations of the algorithm are provided to deal with high-noise scenarios and to significantly reduce its execution time, respectively. Our experimental results, conducted using both synthetic and real hyperspectral scenes, indicate that the presented method is highly competitive (in terms of both unmixing accuracy and computational performance) with regard to other SU techniques with similar requirements, while providing a fully self-contained unmixing chain without the need for any input parameters. Numéro de notice : A2015-317 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2383440 En ligne : https://doi.org/10.1109/TGRS.2014.2383440 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76567
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3772 - 3790[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Spectral–spatial kernel regularized for hyperspectral image denoising full text / Yuan Yuan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Spectral–spatial kernel regularized for hyperspectral image denoising full text Type de document : Article/Communication Auteurs : Yuan Yuan, Auteur ; Xianngtao Zheng, Auteur ; Xiaoqiang Lu, Auteur Année de publication : 2015 Article en page(s) : pp 3815 - 3832 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] filtre adaptatif
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Noise contamination is a ubiquitous problem in hyperspectral images (HSIs), which is a challenging and promising theme in many remote sensing applications. A large number of methods have been proposed to remove noise. Unfortunately, most denoising methods fail to take full advantages of the high spectral correlation and to simultaneously consider the specific noise distributions in HSIs. Recently, a spectral-spatial adaptive hyperspectral total variation (SSAHTV) was proposed and obtained promising results. However, the SSAHTV model is insensitive to the image details, which makes the edges blur. To overcome all of these drawbacks, a spectral-spatial kernel method for HSI denoising is proposed in this paper. The proposed method is inspired by the observation that the spectral-spatial information is highly redundant in HSIs, which is sufficient to estimate the clear images. In this paper, a spectral-spatial kernel regularization is proposed to maintain the spectral correlations in spectral dimension and to match the original structure between two spatial dimensions. Moreover, an adaptive mechanism is developed to balance the fidelity term according to different noise distributions in each band. Therefore, it cannot only suppress noise in the high-noise band but also preserve information in the low-noise band. The reliability of the proposed method in removing noise is experimentally proved on both simulated data and real data. Numéro de notice : A2015-318 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2385082 En ligne : https://doi.org/10.1109/TGRS.2014.2385082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76569
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3815 - 3832[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Semisupervised transfer component analysis for domain adaptation in remote sensing image classification / Giona Matasci in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Semisupervised transfer component analysis for domain adaptation in remote sensing image classification Type de document : Article/Communication Auteurs : Giona Matasci, Auteur ; Michele Volpi, Auteur ; Mikhail Kanevski, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3550 - 3564 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] découverte de connaissances
[Termes IGN] extraction automatique
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] occupation du solRésumé : (Auteur) In this paper, we study the problem of feature extraction for knowledge transfer between multiple remotely sensed images in the context of land-cover classification. Several factors such as illumination, atmospheric, and ground conditions cause radiometric differences between images of similar scenes acquired on different geographical areas or over the same scene but at different time instants. Accordingly, a change in the probability distributions of the classes is observed. The purpose of this work is to statistically align in the feature space an image of interest that still has to be classified (the target image) to another image whose ground truth is already available (the source image). Following a specifically designed feature extraction step applied to both images, we show that classifiers trained on the source image can successfully predict the classes of the target image despite the shift that has occurred. In this context, we analyze a recently proposed domain adaptation method aiming at reducing the distance between domains, Transfer Component Analysis, and assess the potential of its unsupervised and semisupervised implementations. In particular, with a dedicated study of its key additional objectives, namely the alignment of the projection with the labels and the preservation of the local data structures, we demonstrate the advantages of Semisupervised Transfer Component Analysis. We compare this approach with other both linear and kernel-based feature extraction techniques. Experiments on multi- and hyperspectral acquisitions show remarkable cross- image classification performances for the considered strategy, thus confirming its suitability when applied to remotely sensed images. Numéro de notice : A2015-319 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2377785 En ligne : https://doi.org/10.1109/TGRS.2014.2377785 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76570
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3550 - 3564[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Toward evaluating multiscale segmentations of high spatial resolution remote sensing images / Xueliang Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Toward evaluating multiscale segmentations of high spatial resolution remote sensing images Type de document : Article/Communication Auteurs : Xueliang Zhang, Auteur ; Pengfeng Xiao, Auteur ; Xuezhi Feng, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3694 - 3706 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse multicritère
[Termes IGN] Chine
[Termes IGN] image à haute résolution
[Termes IGN] image Quickbird
[Termes IGN] segmentation hiérarchique
[Termes IGN] segmentation multi-échelleRésumé : (Auteur) Object-based analysis of high spatial resolution remote sensing images addresses the matter of multiscale segmentation. However, existing segmentation evaluation methods mainly focus on single-scale segmentation. In this paper, we examine the issue of supervised multiscale segmentation evaluation and propose two discrepancy measures to determine the manner in which geographic objects are delineated by multiscale segmentations. A QuickBird scene in Hangzhou, China, is used to conduct the evaluation. The results reveal the effectiveness of the proposed measures, in terms of method comparison and parameter optimization, for multiscale segmentation of high spatial resolution images. Moreover, meaningful indications for selecting suitable multiple segmentation scales are presented. The proposed measures are applicable to performance evaluation and parameter optimization for multiscale segmentation algorithms. Numéro de notice : A2015-320 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2381632 En ligne : https://doi.org/10.1109/TGRS.2014.2381632 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76573
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3694 - 3706[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible An adaptive semisupervised approach to the detection of user-defined recurrent changes in image time series / Daniel Zanotta in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : An adaptive semisupervised approach to the detection of user-defined recurrent changes in image time series Type de document : Article/Communication Auteurs : Daniel Zanotta, Auteur ; Lorenzo Bruzzone, Auteur ; Francesca Bovolo, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3707 - 3719 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] forêt
[Termes IGN] image Landsat-TM
[Termes IGN] incendie de forêt
[Termes IGN] série temporelleRésumé : (Auteur) In this paper, we present a novel domain adaptation technique aimed at providing reliable change detection maps for a series of image pairs acquired on the same area at different times. The proposed technique exploits the polar change vector analysis method and assumes that the reference data for characterizing a specific change of interest are available only for a pair of images (source domain). Then, it exploits the knowledge learned from the source domain and adapts it to other pairs of images belonging to the time series (target domains) to be analyzed. The proposed technique is able to handle possible radiometric differences among images adapting in an unsupervised way the decision rule estimated on the source domain to the target domains through variables estimated directly on the target images. The proposed approach has been applied to two data sets made up of time series of Landsat Thematic Mapper images. In one case, the change of interest is related to evolution of deforestation, while in the other case, it is related to burned area detection. Experimental results show the effectiveness of the proposed technique. Numéro de notice : A2015-321 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2381645 En ligne : https://doi.org/10.1109/TGRS.2014.2381645 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76574
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3707 - 3719[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible