Descripteur
Documents disponibles dans cette catégorie (47)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Fast estimation for robust supervised classification with mixture models / Erwan Giry Fouquet in Pattern recognition letters, vol 152 (December 2021)
[article]
Titre : Fast estimation for robust supervised classification with mixture models Type de document : Article/Communication Auteurs : Erwan Giry Fouquet, Auteur ; Mathieu Fauvel, Auteur ; Clément Mallet , Auteur ; Clément Mallet , Auteur Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément, ANITI / Mallet, Clément Article en page(s) : pp 320 - 326 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] méthode robuste
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Label noise is known to negatively impact the performance of classification algorithms. In this paper, we develop a model robust to label noise that uses both labelled and unlabelled samples. In particular, we propose a novel algorithm to optimize the model parameters that scales efficiently w.r.t. the number of training samples. Our contribution relies on a consensus formulation of the original objective function that is highly parallelizable. The optimization is performed with the Alternating Direction Method of Multipliers framework. Experimental results on synthetic datasets show an improvement of several orders of magnitude in terms of processing time, with no loss in terms of accuracy. Our method appears also tailored to handle real data with significant label noise. Numéro de notice : A2021-061 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.patrec.2021.10.020 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1016/j.patrec.2021.10.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99531
in Pattern recognition letters > vol 152 (December 2021) . - pp 320 - 326[article]Graph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)
[article]
Titre : Graph convolutional networks by architecture search for PolSAR image classification Type de document : Article/Communication Auteurs : Hongying Liu, Auteur ; Derong Xu, Auteur ; Tianwen Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1404 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] échantillon
[Termes IGN] graphe
[Termes IGN] image AIRSAR
[Termes IGN] image radar moirée
[Termes IGN] noeud
[Termes IGN] polarimétrie radar
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Classification of polarimetric synthetic aperture radar (PolSAR) images has achieved good results due to the excellent fitting ability of neural networks with a large number of training samples. However, the performance of most convolutional neural networks (CNNs) degrades dramatically when only a few labeled training samples are available. As one well-known class of semi-supervised learning methods, graph convolutional networks (GCNs) have gained much attention recently to address the classification problem with only a few labeled samples. As the number of layers grows in the network, the parameters dramatically increase. It is challenging to determine an optimal architecture manually. In this paper, we propose a neural architecture search method based GCN (ASGCN) for the classification of PolSAR images. We construct a novel graph whose nodes combines both the physical features and spatial relations between pixels or samples to represent the image. Then we build a new searching space whose components are empirically selected from some graph neural networks for architecture search and develop the differentiable architecture search method to construction our ASGCN. Moreover, to address the training of large-scale images, we present a new weighted mini-batch algorithm to reduce the computing memory consumption and ensure the balance of sample distribution, and also analyze and compare with other similar training strategies. Experiments on several real-world PolSAR datasets show that our method has improved the overall accuracy as much as 3.76% than state-of-the-art methods. Numéro de notice : A2021-350 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13071404 Date de publication en ligne : 06/04/2021 En ligne : https://doi.org/10.3390/rs13071404 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97600
in Remote sensing > vol 13 n° 7 (April-1 2021) . - n° 1404[article]Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss Type de document : Article/Communication Auteurs : Ruoqiao Jiang, Auteur ; Shaohui Mei, Auteur ; Mingyang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3326 - 3337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] invariant
[Termes IGN] réseau neuronal siamois
[Termes IGN] rotationRésumé : (auteur) Rotation-invariant features are of great importance for object detection and image classification in very-high-resolution (VHR) optical remote sensing images. Though multibranch convolutional neural network (mCNN) has been demonstrated to be very effective for rotation-invariant feature learning, how to effectively train such a network is still an open problem. In this article, a nested Siamese structure (NSS) is proposed for training the mCNN to learn effective rotation-invariant features, which consists of an inner Siamese structure to enhance intraclass cohesion and an outer Siamese structure to enlarge interclass margin. Moreover, a double center loss (DCL) function, in which training samples from the same class are mapped closer to each other while those from different classes are mapped far away to each other, is proposed to train the proposed NSS even with a small amount of training samples. Experimental results over three benchmark data sets demonstrate that the proposed NSS trained by DCL is very effective to encounter rotation varieties when learning features for image classification and outperforms several state-of-the-art rotation-invariant feature learning algorithms even when a small amount of training samples are available. Numéro de notice : A2021-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3021283 Date de publication en ligne : 18/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3021283 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97395
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3326 - 3337[article]Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm / Fengfan Wang in Computers & geosciences, vol 149 (April 2021)
[article]
Titre : Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm Type de document : Article/Communication Auteurs : Fengfan Wang, Auteur ; Jia Yu, Auteur ; Zhijie Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 104713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] calcul matriciel
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] diagramme
[Termes IGN] échantillon
[Termes IGN] Extreme Gradient Machine
[Termes IGN] fond marin
[Termes IGN] gravier
[Termes IGN] image à haute résolution
[Termes IGN] sédimentRésumé : (auteur) Folk's textual classification scheme which is widely used for sediment study operates with the proportions of gravel, sand, silt and clay fractions conventionally. However, dealing with data from different sources usually needs to face missing values that may make the classification difficult. To solve this problem and discover other methods of analyzing the scheme, with samples of offshore seabed sediment, a two-stage model was established to predict a sample's class using the XGBoost algorithm as well as the grain size parameters as input features. The final model was evaluated with quantitative performance measures of recall, precision and F1 score, and by comparing sediment texture maps using the predicted and the actual data. The results show that the model performs well on extraction of sediment samples without gravel fraction, and prediction of classes that have independent characteristics of grain size parameters or samples not near the boundaries of classes in the ternary diagram. The predicted sediment texture is close to the actual and could be reliable due to errors with little impact on further applications. It is demonstrated that the model could be an auxiliary or alternative approach to offshore sediment texture mapping, as well as supplementary to the analysis of sedimentary environment. Numéro de notice : A2021-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104713 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104713 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97400
in Computers & geosciences > vol 149 (April 2021) . - n° 104713[article]Counting of grapevine berries in images via semantic segmentation using convolutional neural networks / Laura Zabawa in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Counting of grapevine berries in images via semantic segmentation using convolutional neural networks Type de document : Article/Communication Auteurs : Laura Zabawa, Auteur ; Anna Kicherer, Auteur ; Lasse Klingbeil, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 73 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] comptage
[Termes IGN] échantillon
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] régression
[Termes IGN] rendement agricole
[Termes IGN] segmentation sémantique
[Termes IGN] traitement d'image
[Termes IGN] viticultureRésumé : (auteur) The extraction of phenotypic traits is often very time and labour intensive. Especially the investigation in viticulture is restricted to an on-site analysis due to the perennial nature of grapevine. Traditionally skilled experts examine small samples and extrapolate the results to a whole plot. Thereby different grapevine varieties and training systems, e.g. vertical shoot positioning (VSP) and semi minimal pruned hedges (SMPH) pose different challenges.
In this paper we present an objective framework based on automatic image analysis which works on two different training systems. The images are collected semi automatic by a camera system which is installed in a modified grape harvester. The system produces overlapping images from the sides of the plants. Our framework uses a convolutional neural network to detect single berries in images by performing a semantic segmentation. Each berry is then counted with a connected component algorithm. We compare our results with the Mask-RCNN, a state-of-the-art network for instance segmentation and with a regression approach for counting. The experiments presented in this paper show that we are able to detect green berries in images despite of different training systems. We achieve an accuracy for the berry detection of 94.0% in the VSP and 85.6% in the SMPH.Numéro de notice : A2020-252 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.002 Date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.002 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94996
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 73 - 83[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Ensemble learning for hyperspectral image classification using tangent collaborative representation / Hongjun Su in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)PermalinkPredictive mapping with small field sample data using semi‐supervised machine learning / Fei Du in Transactions in GIS, Vol 24 n° 2 (April 2020)PermalinkPermalinkA representativeness-directed approach to mitigate spatial bias in VGI for the predictive mapping of geographic phenomena / Guiming Zhang in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)PermalinkVirtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)PermalinkExploring geo-tagged photos for land cover validation with deep learning / Hanfa Xing in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)PermalinkInfluence of sample size on automatic positional accuracy assessment methods for urban areas / Francisco Javier Ariza-López in ISPRS International journal of geo-information, vol 7 n° 6 (June 2018)PermalinkAn evaluation of sampling and full enumeration strategies for Fisher Jenks classification in big data settings / Sergio J. Rey in Transactions in GIS, vol 21 n° 4 (August 2017)PermalinkAn inventory of the above ground biomass in the Mau Forest Ecosystem, Kenya / Mwangi James Kinyanjui in Open journal of forestry, vol 4 n° 10 (July 2014)PermalinkSatellite image time series analysis under time warping / F. Petitjean in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)Permalink