Descripteur
Documents disponibles dans cette catégorie (37)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction / Wanli Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction Type de document : Article/Communication Auteurs : Wanli Liu, Auteur ; Shuaishuai Sun, Auteur ; Zhixiong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7483 - 7495 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse harmonique
[Termes IGN] angle d'incidence
[Termes IGN] compensation
[Termes IGN] erreur de mesure
[Termes IGN] erreur géométrique
[Termes IGN] erreur instrumentale
[Termes IGN] fonction spline d'interpolation
[Termes IGN] modèle mathématique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) The accuracy of geometric parameters (mainly referred to the incidence angle and measuring distance) in a terrestrial laser scanner (TLS) is not only influenced by the TLS intrinsic systematic instrumental error but also the extrinsic received intensity data. However, the current error compensation methods for geometric parameters mainly focus on the calibration of TLS intrinsic systematic instrumental error and rarely consider the extrinsic intensity data correction. For this reason, this article presents a new method integrating the TLS intrinsic systematic instrumental error calibration and extrinsic intensity data correction to compensate the TLS geometric parameter error. The error compensation procedure is implemented as follows. First, the error compensation mathematical model integrated with TLS intrinsic systematic instrumental error calibration parameters and extrinsic intensity data correction coefficient is established. Second, the hybrid harmonic analysis (HA) and the adaptive wavelet neural network (AWNN) algorithm are proposed to calculate the TLS incidence angle error compensation values. Subsequently, the cubic spline interpolation (CSI) is applied to compute the measuring distance error compensate values. Finally, the TLS (model FARO Focus S150) and the hemispherical angle calibration instrument were used to evaluate the proposed compensation method. The experimental results demonstrate that the geometric parameters are significantly influenced by the intensity data received from TLS, and the proposed method can effectively improve the overall accuracy of the TLS incidence angle and measuring distance. Numéro de notice : A2020-602 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984885 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95957
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7483 - 7495[article]Estimations of GNSS receiver internal delay using precise point positioning algorithm / Natchapan Pothikunkupatarak in Journal of applied geodesy, vol 13 n° 1 (January 2019)
[article]
Titre : Estimations of GNSS receiver internal delay using precise point positioning algorithm Type de document : Article/Communication Auteurs : Natchapan Pothikunkupatarak, Auteur ; Thayathip Thongtan, Auteur ; Chalermchon Satirapod, Auteur Année de publication : 2019 Article en page(s) : pp 41 - 46 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Métrologie
[Termes IGN] erreur instrumentale
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur GNSSRésumé : (Auteur) Random and systematic errors affect navigation satellite observations on both pseudo-range and carrier phase. These errors are originated at satellites, propagation path and receivers. This study focuses on the GNSS receiver internal delay determination resulting from the receiver’s electronics circuit. The characterisation of the delay in the GNSS geodetic receivers is essential to enhance the accuracy for the time transfer and time comparisons as part of GNSS integrity chain determinations. The purpose of GNSS receiver internal delay at the National Institute of Metrology (Thailand), NIMT, is to estimate the characteristics and performances of the GNSS geodetic receiver used for international time comparisons. The experiments are simultaneously observed GNSS satellites by a GPS and a GNSS receivers and two separate antennas with short baseline (around 6 metres), where both receivers are connected to the identical external caesium frequency standard maintained as time and frequency standard of Thailand. The GPS receiver is well-defined for its receiver internal delay on the pseudo-range observation of C1, through comparisons using an internationally recognised method, while the geodetic GNSS receiver is to be defined on its receiver internal delay. These experiment observations started from 26 December 2017 to 17 January 2018 at NIMT, Pathumthani, Thailand. The determined unknowns are receiver position, receiver clock offset, tropospheric delay through the geodetic technique of static Precise Point Positioning observations with Bernese GNSS software version 5.2. Later the receiver internal delay of NIMT is computed and analysed. The receiver internal delay on GPS C1 code is successfully characterised, resulted as 346.0 nanoseconds as of this experiment. Numéro de notice : A2019-133 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2018-0020 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1515/jag-2018-0020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92463
in Journal of applied geodesy > vol 13 n° 1 (January 2019) . - pp 41 - 46[article]Differential positioning based on the orthogonal transformation algorithm with GNSS multi-system / Xiao Liang in GPS solutions, vol 22 n° 3 (July 2018)
[article]
Titre : Differential positioning based on the orthogonal transformation algorithm with GNSS multi-system Type de document : Article/Communication Auteurs : Xiao Liang, Auteur ; Zhigang Huang, Auteur ; Honglei Qin, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] ambiguïté entière
[Termes IGN] erreur instrumentale
[Termes IGN] erreur systématique
[Termes IGN] filtre de Kalman
[Termes IGN] méthode des moindres carrés
[Termes IGN] positionnement différentiel
[Termes IGN] résolution d'ambiguïté
[Termes IGN] simple différence
[Vedettes matières IGN] Traitement de données GNSSRésumé : (Auteur) Combining global navigation satellite systems (GNSSs) will significantly increase the number of visible satellites and, thus, will improve the geometry of observed satellites, resulting in improved positioning reliability and accuracy. We focus on GNSS multi-system differential positioning based on a single-system orthogonal transformation algorithm. The orthogonal transformation algorithm using single-difference measurements is proposed to avoid the high correlation between measurements and the unnecessary prominence to the reference satellite in double-difference positioning. In addition, the algorithm uses a more straightforward recursive least squares method to avoid the effect of uncertainties of the Kalman filter. We discuss the model differences between combined system positioning and single-system positioning and verify that the combining observations of different systems should start to be used after clock biases have been reduced, respectively. Moreover, as to rising and setting of satellites in multi-system differential positioning, we propose to use matrix transform to separate the setting satellites of combined systems at an epoch. This can avoid the correlation of initial integer ambiguity vectors of different systems. The experimental results show that the proposed method can handle the change of satellites automatically and combine multiple systems for reliable and accuracy differential positioning. The method especially outperforms the basic single-system orthogonal transformation positioning and traditional multi-system double-difference positioning in a complex environment. Numéro de notice : A2018-371 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0754-6 Date de publication en ligne : 02/07/2018 En ligne : https://doi.org/10.1007/s10291-018-0754-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90763
in GPS solutions > vol 22 n° 3 (July 2018)[article]On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases / Amir Khodabandeh in Journal of geodesy, vol 92 n° 6 (June 2018)
[article]
Titre : On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases Type de document : Article/Communication Auteurs : Amir Khodabandeh, Auteur ; Peter J.G. Teunissen, Auteur Année de publication : 2018 Article en page(s) : pp 637 – 658 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] ambiguïté entière
[Termes IGN] correction ionosphérique
[Termes IGN] double différence
[Termes IGN] erreur instrumentale
[Termes IGN] erreur systématique
[Termes IGN] résolution d'ambiguïtéRésumé : (Auteur) Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples. Numéro de notice : A2018-150 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1084-0 Date de publication en ligne : 14/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1084-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89761
in Journal of geodesy > vol 92 n° 6 (June 2018) . - pp 637 – 658[article]Design and implementation of a model predictive observer for AHRS / Jafar Keighobadi in GPS solutions, vol 22 n° 1 (January 2018)
[article]
Titre : Design and implementation of a model predictive observer for AHRS Type de document : Article/Communication Auteurs : Jafar Keighobadi, Auteur ; Hamid Vosoughi, Auteur ; Javad Faraji, Auteur Année de publication : 2018 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] angle d'Euler
[Termes IGN] attitude and heading reference system AHRS
[Termes IGN] erreur instrumentale
[Termes IGN] erreur systématique
[Termes IGN] estimateur
[Termes IGN] filtre de Kalman
[Termes IGN] GPS-INS
[Termes IGN] microsystème électromécanique
[Termes IGN] véhiculeRésumé : (auteur) A GPS-aided Inertial Navigation System (GAINS) is used to determine the orientation‚ position and velocity of ground and aerial vehicles. The data measured by Inertial Navigation System (INS) and GPS are commonly integrated through an Extended Kalman Filter (EKF). Since the EKF requires linearized models and complete knowledge of predefined stochastic noises‚ the estimation performance of this filter is attenuated by unmodeled nonlinearity and bias uncertainties of MEMS inertial sensors. The Attitude Heading Reference System (AHRS) is applied based on the quaternion and Euler angles methods. A moving horizon-based estimator such as Model Predictive Observer (MPO) enables us to approximate and estimate linear systems affected by unknown uncertainties. The main objective of this research is to present a new MPO method based on the duality principle between controller and observer of dynamic systems and its implementation in AHRS mode of a low-cost INS aided by a GPS. Asymptotic stability of the proposed MPO is proven by applying Lyapunov’s direct method. The field test of a GAINS is performed by a ground vehicle to assess the long-time performance of the MPO method compared with the EKF. Both the EKF and MPO estimators are applied in AHRS mode of the MEMS GAINS for the purpose of real-time performance comparison. Furthermore‚ we use flight test data of the GAINS for evaluation of the estimation filters. The proposed MPO based on both the Euler angles and quaternion methods yields better estimation performances compared to the classic EKF. Numéro de notice : A2018-017 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-017-0696-4 En ligne : https://doi.org/10.1007/s10291-017-0696-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89114
in GPS solutions > vol 22 n° 1 (January 2018)[article]Tight integration of INS/Stereo VO/Digital map for land vehicle navigation / Fei Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 1 (January 2018)PermalinkNew adjustment of the Croatian first order gravity network / Marija Repanic in Geodetski vestnik, vol 61 n° 4 (December 2017 - February 2018)PermalinkIonospheric and receiver DCB-constrained multi-GNSS single-frequency PPP integrated with MEMS inertial measurements / Zhouzheng Gao in Journal of geodesy, vol 91 n° 11 (November 2017)PermalinkStochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis / Bofeng Li in Journal of geodesy, vol 90 n° 7 (July 2016)PermalinkUpdated best practice for EDM calibrations in New South Wales / Volker Janssen in Position, n° 78 (August - September 2015)PermalinkEvaluation de la technologie des caméras 3D (Kinect 2) pour la mesure et la reconstruction d’objets à courte portée / Elise Lachat (2015)PermalinkAnalysis of the repeated absolute gravity measurements in the Czech Republic, Slovakia and Hungary from the period 1991–2010 considering instrumental and hydrological effects / S. Zhang in Journal of geodesy, vol 87 n° 1 (January 2013)PermalinkApport du système de navigation GLONASS à la surveillance de l'ionosphère au dessus de l'Europe / Emilie Pelletier (2013)PermalinkCorrelated errors in GPS position time series: Implications for velocity estimates / Alvaro Santamaria Gomez in Journal of geophysical research : Solid Earth, Vol 116 n° B1 (January 2011)PermalinkAn absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia / J.F. Cretaux in Journal of geodesy, vol 83 n° 8 (August 2009)Permalink