Descripteur
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery / Qian Shen in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Qian Shen, Auteur ; Jiru Huang, Auteur ; Min Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 78 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données qualitatives
[Termes IGN] estimation quantitative
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] jeu de données
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) In the field of remote sensing applications, semantic change detection (SCD) simultaneously identifies changed areas and their change types by jointly conducting bitemporal image classification and change detection. It facilitates change reasoning and provides more application value than binary change detection (BCD), which offers only a binary map of the changed/unchanged areas. In this study, we propose a multitask Siamese network, named the semantic feature-constrained change detection (SFCCD) network, for building change detection in bitemporal high-spatial-resolution (HSR) images. SFCCD conducts feature extraction, semantic segmentation and change detection simultaneously, where change detection and semantic segmentation are the main and auxiliary tasks, respectively. For the segmentation task, ResNet50 is used to conduct image feature extraction, and the extracted semantic features are provided to execute the change detection task via a series of jump connections. For the change detection task, a global channel attention (GCA) module and a multiscale feature fusion (MSFF) module are designed, where high-level features offer training guidance to the low-level feature maps, and multiscale features are fused with multiple convolutions that possess different receptive fields. In bitemporal HSR images with different view angles, high-rise buildings have different directional height displacements, which generally cause serious false alarms for common change detection methods. However, known public building change detection datasets often lack buildings with height displacement. We thus create the Nanjing Dataset (NJDS) and design the aforementioned network structures and modules to target this issue. Experiments for method validation and comparison are conducted on the NJDS and two additional public datasets, i.e., the WHU Building Dataset (WBDS) and Google Dataset (GDS). Ablation experiments on the NJDS show that the joint utilization of the GCA and MSFF modules performs better than several classic modules, including atrous spatial pyramid pooling (ASPP), efficient spatial pyramid (ESP), channel attention block (CAB) and global attention upsampling (GAU) modules, in dealing with building height displacement. Furthermore, SFCCD achieves higher accuracy in terms of the OA, recall, F1-score and mIoU measures than several state-of-the-art change detection methods, including deeply supervised image fusion network (DSIFN), the dual-task constrained deep Siamese convolutional network (DTCDSCN), and multitask U-Net (MTU-Net). Numéro de notice : A2022-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.05.001 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.05.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100762
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 78 - 94[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Line-based deep learning method for tree branch detection from digital images / Rodrigo L. S. Silva in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)
[article]
Titre : Line-based deep learning method for tree branch detection from digital images Type de document : Article/Communication Auteurs : Rodrigo L. S. Silva, Auteur ; José Marcato Junior, Auteur ; Laisa Almeida, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données qualitatives
[Termes IGN] estimation quantitative
[Termes IGN] image à haute résolution
[Termes IGN] ligne (géométrie)
[Termes IGN] transformation de HoughRésumé : (auteur) Preventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid interruptions in the energy supply. Automatic methods can support this risky task and also reduce time-consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip). Numéro de notice : A2022-550 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102759 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101153
in International journal of applied Earth observation and geoinformation > vol 110 (June 2022) . - n° 102759[article]Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests / Chong Zhang in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests Type de document : Article/Communication Auteurs : Chong Zhang, Auteur ; Jiawei Zhou, Auteur ; Huiwen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] échantillonnage de données
[Termes IGN] entropie
[Termes IGN] estimation quantitative
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] peuplement mélangé
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'imageRésumé : (auteur) High-resolution UAV imagery paired with a convolutional neural network approach offers significant advantages in accurately measuring forestry ecosystems. Despite numerous studies existing for individual tree crown delineation, species classification, and quantity detection, the comprehensive situation in performing the above tasks simultaneously has rarely been explored, especially in mixed forests. In this study, we propose a new method for individual tree segmentation and identification based on the improved Mask R-CNN. For the optimized network, the fusion type in the feature pyramid network is modified from down-top to top-down to shorten the feature acquisition path among the different levels. Meanwhile, a boundary-weighted loss module is introduced to the cross-entropy loss function Lmask to refine the target loss. All geometric parameters (contour, the center of gravity and area) associated with canopies ultimately are extracted from the mask by a boundary segmentation algorithm. The results showed that F1-score and mAP for coniferous species were higher than 90%, and that of broadleaf species were located between 75%–85.44%. The producer’s accuracy of coniferous forests was distributed between 0.8–0.95 and that of broadleaf ranged in 0.87–0.93; user’s accuracy of coniferous was distributed between 0.81–0.84 and that of broadleaf ranged in 0.71–0.76. The total number of trees predicted was 50,041 for the entire study area, with an overall error of 5.11%. The method under study is compared with other networks including U-net and YOLOv3. Results in this study show that the improved Mask R-CNN has more advantages in broadleaf canopy segmentation and number detection. Numéro de notice : A2022-168 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14040874 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99793
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 874[article]Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
[article]
Titre : Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax Type de document : Article/Communication Auteurs : Jose Morales, Auteur ; Alfred Stein, Auteur ; Johannes Flacke, Auteur ; Jaap Zevenbergen, Auteur Année de publication : 2020 Article en page(s) : pp 1451 - 1474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de la valeur
[Termes IGN] analyse syntaxique
[Termes IGN] cartographie statistique
[Termes IGN] estimation quantitative
[Termes IGN] évaluation foncière
[Termes IGN] géostatistique
[Termes IGN] Guatemala
[Termes IGN] krigeage
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle de simulation
[Termes IGN] régression
[Termes IGN] système d'information foncièreRésumé : (auteur) Spatial information of land values is fundamental for planners and policy makers. Individual appraisals are costly, explaining the need for predictive modelling. Recent work has investigated using Space Syntax to analyse urban access and explain land values. However, the spatial dependence of urban land markets has not been addressed in such studies. Further, the selection of meaningful variables is commonly conducted under non-spatialized modelling conditions. The objective of this paper is to construct a land value map using a geostatistical approach using Space Syntax and a spatialized variable selection. The methodology is applied in Guatemala City. We used an existing dataset of residential land value appraisals and accessibility metrics. Regression-kriging was used to conduct variable selection and derive a model for spatial prediction. The prediction accuracy is compared with a multivariate regression. The results show that a spatialized variable selection yields a more parsimonious model with higher prediction accuracy. New insights were found on how Space Syntax explains land value variability when also modelling the spatial dependence. Space Syntax can contribute with relevant spatialized information for predictive land value modelling purposes. Finally, the spatial modelling framework facilitates the production of spatial information of land values that is relevant for planning practice. Numéro de notice : A2020-306 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725014 Date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95148
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1451 - 1474[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 RAB Revue Centre de documentation En réserve L003 Disponible Regionalization of flood magnitudes using the ecological attributes of watersheds / Bahman Jabbarian Amiri in Geocarto international, vol 35 n° 9 ([01/07/2020])
[article]
Titre : Regionalization of flood magnitudes using the ecological attributes of watersheds Type de document : Article/Communication Auteurs : Bahman Jabbarian Amiri, Auteur ; Bahareh Baheri, Auteur ; Nicola Fohrer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 917 - 933 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] bassin hydrographique
[Termes IGN] Caspienne, mer
[Termes IGN] crue
[Termes IGN] débit
[Termes IGN] estimation quantitative
[Termes IGN] humidité du sol
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] prévention des risques
[Termes IGN] régionalisation (segmentation)
[Termes IGN] ressources en eau
[Termes IGN] utilisation du sol
[Termes IGN] zone inondableRésumé : (auteur) Estimating flood discharge at ungauged sites is a significant challenge facing water resources planners and engineers during the planning and design of hydraulic structures, managing flood prone zones, and operating artificial waterbodies. Developing more robust models to improve the reliability of flood discharge estimations is thus very useful. The role of ecological attributes including land use/land cover (LULC), hydrologic soil groups (HSG), and watershed physical characteristics (area, main stream length, average slope), and watershed shape coefficients (form, compactness, circularity, and elongation) in explaining the overall variation in flood magnitude in 39 watersheds, located in the southern basin of the Caspian Sea, was investigated. As the LULC and HSG were found to play a significant role in explaining total variation (40–89%) in flood magnitudes, their inclusion in the estimation of flood magnitudes can provide more reliable estimates of flood risk and magnitude. Numéro de notice : A2020-428 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552321 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95494
in Geocarto international > vol 35 n° 9 [01/07/2020] . - pp 917 - 933[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020091 RAB Revue Centre de documentation En réserve L003 Disponible A global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)PermalinkPermalinkMultivariate label-based thematic maps / Richard Brath in International journal of cartography, vol 3 n° 1 (June 2017)PermalinkEstimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution / Ivan Balenović in Annals of forest research, vol 58 n° 1 (January 2015)Permalinkvol 30 n° 19 - October 2009 - ForestSat 2007, [actes], operational tools in forestry using remote sensing techniques, Montpellier, 5 - 7 November 2007 (Bulletin de International Journal of Remote Sensing IJRS) / Ronald E. McRobertsPermalinkEstimation of regional evapotranspiration by TM/ETM+ data over heterogeneous surfaces / S. Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 73 n° 10 (October 2007)PermalinkA four-component efficiency index for assessing land development using remote sensing and GIS / X. Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 71 n° 1 (January 2005)PermalinkEstimation par télédétection satellitaire de la récolte annuelle en bois dans la futaie pure de pin maritime du massif des landes de Gascogne / Anne Jolly (1993)PermalinkEstimation du rayonnement solaire global au sol et de l'albédo de surface à l'aide de Météosat / Gérard Dedieu (1984)Permalink