Descripteur
Termes IGN > 1-Candidats > factorisation de matrice non-négative
factorisation de matrice non-négative |
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; Tahereh Bahraini, Auteur ; Hadi Sadoghi Yazdi, Auteur Année de publication : 2021 Article en page(s) : pp 3266 - 3276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification bayesienne
[Termes IGN] classification floue
[Termes IGN] distribution de Gauss
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] image hyperspectrale
[Termes IGN] Matlab
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] variableRésumé : (auteur) The hyperspectral-image (HSI) noise-reduction step is a very significant preprocessing phase of data-quality enhancement. It has been attracting immense research attention in the remote sensing and image processing domains. Many methods have been developed for HSI restoration, the goal of which is to remove noise from the whole HSI cube simultaneously without considering the spectral–spatial similarity. When a noise-removal algorithm is used globally to the entire data set, it would not eliminate all levels of noise, effectively. Furthermore, most of the existing methods remove independent and identically distributed (i.i.d.) Gaussian noise. The real scenarios are much more complicated than this assumption. The complexity created by natural noise that has a non-i.i.d. structure leads to inefficient methods containing underestimation and invalid performance. In this article, we calculated the spatial–spectral similarity criteria by defining a set of clustering-based latent variables (CLVs) in a Bayesian framework to improve the robustness. These criteria can be extracted using the clustering operators. Then, by applying the CLV to the variational Bayesian model, we investigated a new low-rank matrix factorization denoising approach based on the proposed clustering-based latent variable (CLV-LRMF) to remove noise with the non-i.i.d. mixture of Gaussian structures. Finally, we switched to the GPU for MATLAB implementation to reduce the runtime. The experimental results show that the performance has been improved by applying the proposed CLV and demonstrate the effectiveness of the proposed CLV-LRMF over other state-of-the-art methods. Numéro de notice : A2021-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939512 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.1109/TGRS.2019.2939512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97396
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3266 - 3276[article]How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
[article]
Titre : How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data Type de document : Article/Communication Auteurs : Chaogui Kang, Auteur ; Li Shi, Auteur ; Fahui Wang, Auteur ; Yu Liu, Auteur Année de publication : 2020 Article en page(s) : pp 1504 - 1525 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données spatiotemporelles
[Termes IGN] ethnographie
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] matrice de co-occurrence
[Termes IGN] production participative
[Termes IGN] réseau social
[Termes IGN] site urbain
[Termes IGN] téléphonie mobile
[Termes IGN] urbanismeRésumé : (Auteur) This research attempts to build a unified framework for distinguishing the spatiotemporal visit patterns of urban places by different social groups using mobile phone data in Harbin, China. Social groups are detected by their social ties in the ego‐to‐ego mobile phone call network and are embedded in physical space according to their home locations. Popular urban places are detected from user‐generated content as the basic spatial analysis unit. Coupling subscribers’ footprints and urban places in physical space, the spatiotemporal visit patterns of urban places by distinct social groups are uncovered and interpreted by non‐negative matrix factorization. The proposed framework enables us to answer several critical questions from three perspectives: (1) How to model popular urban places in terms of vague boundary, land use, and semantic features based on crowdsourcing data?; (2) How to evaluate interaction between individuals for inspecting the relationship between spatial proximity and social ties based on spatiotemporal co‐occurrence?; and (3) How to distinguish urban place visit preferences for social groups associated with different socio‐demographic characteristics? Our research could assist urban planners and municipal managers to identify critical urban places frequented by different population groups according to their roles and social/cultural characteristics for improvement of urban facility allocation. Numéro de notice : A2020-767 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12654 Date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1111/tgis.12654 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96658
in Transactions in GIS > Vol 24 n° 6 (December 2020) . - pp 1504 - 1525[article]Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis Type de document : Article/Communication Auteurs : Jiong Wang, Auteur ; Olivier Schmitz, Auteur ; Meng Lu, Auteur ; Derek Karssenberg, Auteur Année de publication : 2020 Article en page(s) : pp 76 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] mise à l'échelle
[Termes IGN] Pays-Bas
[Termes IGN] radiance
[Termes IGN] réduction
[Termes IGN] température de surface
[Termes IGN] variation diurneRésumé : (Auteur) Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal resolution, land surface temperature (LST) dense in both space and time can only be obtained through downscaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only feasible in an ideal situation, where land surface factors as LST predictors are continuously available for downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations. Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery. First, an optimal number of thermal components are extracted at fine resolution through the application of the non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and thermal components at coarse resolution, the LST change load of each component can then be obtained at the coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates temperature over major land types and captures both seasonal and diurnal LST dynamics. Numéro de notice : A2020-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.014 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94580
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 76 - 89[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Partial linear NMF-based unmixing methods for detection and area estimation of photovoltaic panels in urban hyperspectral remote sensing data / Moussa Sofiane Karoui in Remote sensing, vol 11 n° 18 (September 2019)
[article]
Titre : Partial linear NMF-based unmixing methods for detection and area estimation of photovoltaic panels in urban hyperspectral remote sensing data Type de document : Article/Communication Auteurs : Moussa Sofiane Karoui, Auteur ; Fatima Zohra Benhalouche, Auteur ; Yannick Deville, Auteur ; Khelifa Djerriri, Auteur ; Xavier Briottet , Auteur ; Thomas Houet, Auteur ; Arnaud Le Bris , Auteur ; Christiane Weber, Auteur Année de publication : 2019 Projets : HYEP / Weber, Christiane Article en page(s) : n° 2164 Note générale : bibliographie
This paper constitutes a substantial extension of: https://doi.org/10.1109/IGARSS.2018.8518204Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] détection d'objet
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] panneau photovoltaïque
[Termes IGN] zone urbaineRésumé : (auteur) High-spectral-resolution hyperspectral data are acquired by sensors that gather images from hundreds of narrow and contiguous bands of the electromagnetic spectrum. These data offer unique opportunities for characterization and precise land surface recognition in urban areas. So far, few studies have been conducted with these data to automatically detect and estimate areas of photovoltaic panels, which currently constitute an important part of renewable energy systems in urban areas of developed countries. In this paper, two hyperspectral-unmixing-based methods are proposed to detect and to estimate surfaces of photovoltaic panels. These approaches, related to linear spectral unmixing (LSU) techniques, are based on new nonnegative matrix factorization (NMF) algorithms that exploit known panel spectra, which makes them partial NMF methods. The first approach, called Grd-Part-NMF, is a gradient-based method, whereas the second one, called Multi-Part-NMF, uses multiplicative update rules. To evaluate the performance of these approaches, experiments are conducted on realistic synthetic and real airborne hyperspectral data acquired over an urban region. For the synthetic data, obtained results show that the proposed methods yield much better overall performance than NMF-unmixing-based methods from the literature. For the real data, the obtained detection and area estimation results are first confirmed by using very high-spatial-resolution ortho-images of the same regions. These results are also compared with those obtained by standard NMF-unmixing-based methods and by a one-class-classification-based approach. This comparison shows that the proposed approaches are superior to those considered from the literature. Numéro de notice : A2019-430 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11182164 Date de publication en ligne : 17/09/2019 En ligne : https://doi.org/10.3390/rs11182164 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93739
in Remote sensing > vol 11 n° 18 (September 2019) . - n° 2164[article]An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data / Li Zhuo in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data Type de document : Article/Communication Auteurs : Li Zhuo, Auteur ; Qingli Shi, Auteur ; Haiyan Tao, Auteur ; Jing Zheng, Auteur ; Qiuping Li, Auteur Année de publication : 2018 Article en page(s) : pp 64 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges temporels
[Termes IGN] détection de changement
[Termes IGN] Enhanced vegetation index
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image DMSP-OLS
[Termes IGN] image Terra-MODIS
[Termes IGN] Kouangtoung (Chine)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surface imperméableRésumé : (Auteur) Impervious surface area (ISA) is an important indicator for monitoring the intensity of human activity and ecological environment changes. Developing effective methods for estimation of ISA at different scales has thus been pursued by many scientists. The temporal mixture analysis (TMA), which is a variant of spectral mixture analysis that makes full use of the phenological information of different land cover types, is suitable for estimating the ISA fraction at a large scale. The existing TMA-based ISA fraction estimation methods rely on the assumption that pure pixels exist for all the endmembers, which, however, is not true in the case of coarse-resolution datasets. Moreover, the existing method cannot effectively differentiate bare soil from ISA effectively, which may lead to overestimation of the ISA fraction. To address these problems, we propose a new ISA estimation method based on TMA in this study, using a Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products, the GlobeLand30 product, and the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) data. The proposed method contains four major steps. First, the MODIS NDVI time-series datasets and GlobeLand30 land cover product were used to create an NDVI temporal profile subset for the TMA model. Second, a preliminary ISA fraction map was derived on the basis of optimized endmember temporal profiles, which were generated by unmixing the selected NDVI temporal profile subset through an improved spatial-spectral preprocessing nonnegative matrix factorization algorithm (ISSPP-NMF). Then, the preliminary ISA fraction was further optimized by incorporating the EVI-adjusted night-time light index (EANTLI), which can mitigate both saturation problems and the blooming effect of the DMSP-OLS data. An effective threshold method was introduced in this step to reduce the impact of bare soil on the ISA estimation. Finally, the estimated fraction of ISA was evaluated through accuracy assessment. The proposed method was tested in two study areas, namely, Guangdong Province and the Yangtze River Delta (YRD) of China, to prove its applicability in different regions. Effectiveness of the proposed method was proven through the comparison between the proposed method with traditional TMA-based methods. The results from these analyses indicate that the proposed method outperforms the others in ISA estimation, with an overall root mean square error (RMSE) of 9.2% and a coefficient of determination (R2) of 0.8872 in Guangdong and a RMSE of 8.9% and R2 of 0.8923 in YRD. This study also proves that the ISSPP-NMF method can produce more appropriate endmembers regardless of the existence of pure pixels. The post-processing with the EANLTI procedure can effectively reduce the bare soil effect in TMA-based ISA estimation. Numéro de notice : A2018-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.016 Date de publication en ligne : 05/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90409
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 64 - 77[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Detection and area estimation for photovoltaic panels in urban hyperspectral remote sensing data by an original NMF-based unmixing method / Moussa Sofiane Karoui (2018)PermalinkSpatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing / Xinyu Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)PermalinkTotal variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing / Wei He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)PermalinkMultilayer NMF for blind unmixing of hyperspectral imagery with additional constraints / L. Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 4 (April 2017)PermalinkRobust collaborative nonnegative matrix factorization for hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)PermalinkApport de la prise en compte de la variabilité intra-classe dans les méthodes de démélange hyperspectral pour l'imagerie urbaine / Charlotte Revel (2016)PermalinkTotal-variation-regularized low-rank matrix factorization for hyperspectral image restoration / Wei He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)PermalinkOn diverse noises in hyperspectral unmixing / Chunzhi Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)PermalinkSubstance dependence constrained sparse NMF for hyperspectral unmixing / Yuan Yuan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)PermalinkGeneralizations of bounds on the index of convergence to weighted digraphs / Glenn Merlet in Discrete Applied Mathematics, vol 178 ([11/12/2014])Permalink