Descripteur
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management / A. Marcela Suarez in Cartography and Geographic Information Science, Vol 49 n° 5 (September 2022)
[article]
Titre : A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management Type de document : Article/Communication Auteurs : A. Marcela Suarez, Auteur ; Keith C. Clarke, Auteur Année de publication : 2022 Article en page(s) : pp 443 - 463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] classement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] fiabilité des données
[Termes IGN] filtrage d'information
[Termes IGN] gestion de crise
[Termes IGN] pertinence
[Termes IGN] qualité des données
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Tweets posted by the general public during disaster events represent timely, up-to-date, and on-site data that may be useful for emergency responders. However, since Twitter data has been deemed to be unverifiable and untrustworthy, it is challenging to identify those reliable and relevant tweets that can inform emergency response operations. Although computational methods exist both to classify overwhelming amounts of tweets and to filter those relevant to emergency response, using contextual geographic information regarding the disaster event to filter tweets has been overlooked. We review the existing research on the quality of data contributed by the general public from a geographical perspective, and then propose an approach to prioritize tweets for emergency response based on their relevance and reliability. The novelty of the approach is twofold: a) the use of both authoritative data such as hazard-related information and on-the-ground reports provided by weather spotters and validated by the National Weather Service; and b) the fact that it leverages tweets content as well as their geographical context and location. Using Hurricane Harvey in 2017 as a case study, results show that by following the proposed approach 79% of tweets sent from post-identified flooded areas were classified as of high or medium relevance and reliability. This suggests that the proposed approach can provide an accurate prioritization of tweets to be used for real time emergency management. Numéro de notice : A2022-633 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2081257 En ligne : https://doi.org/10.1080/15230406.2022.2081257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101399
in Cartography and Geographic Information Science > Vol 49 n° 5 (September 2022) . - pp 443 - 463[article]Location-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
[article]
Titre : Location-aware neural graph collaborative filtering Type de document : Article/Communication Auteurs : Shengwen Li, Auteur ; Chenpeng Sun, Auteur ; Renyao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1550 - 1574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] comportement
[Termes IGN] données localisées des bénévoles
[Termes IGN] filtrage d'information
[Termes IGN] jeu de données
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Collaborative filtering (CF) is initiated by representing users and items as vectors and seeks to describe the relationship between users and items at a profound level, thus predicting users’ preferred behavior. To address the issue that previous research ignored higher-order geographical interactions hidden in users’ historical behaviors, this paper proposes a location-aware neural graph collaborative filtering model (LA-NGCF), which incorporates location information of items for improving prediction performance. The model characterizes the interactions between items based on spatial decay law from a graph perspective and designs two strategies to capture the interaction effects of users and items considering node heterogeneity. An optimized loss function with spatial distances of items is also developed in the model. Extensive experiments are conducted on three publicly available real-world datasets to examine the effectiveness of our model. Results show that LA-NGCF achieves competitive performances compared with several state-of-the-art models, which suggests that location information of items is beneficial for improving the performance of personalized recommendations. This paper offers an approach to incorporate weighted interactions between items into CF algorithms and enriches the methods of utilizing geographical information for artificial intelligence applications. Numéro de notice : A2022-592 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2073594 Date de publication en ligne : 11/05/2022 En ligne : https://doi.org/10.1080/13658816.2022.2073594 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101292
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1550 - 1574[article]Using attributes explicitly reflecting user preference in a self-attention network for next POI recommendation / Ruijing Li in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
[article]
Titre : Using attributes explicitly reflecting user preference in a self-attention network for next POI recommendation Type de document : Article/Communication Auteurs : Ruijing Li, Auteur ; Jianzhong Guo, Auteur ; Chun Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 440 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] distance
[Termes IGN] filtrage d'information
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] point d'intérêt
[Termes IGN] réseau social géodépendant
[Termes IGN] Tokyo (Japon)Résumé : (auteur) With the popularity of location-based social networks such as Weibo and Twitter, there are many records of points of interest (POIs) showing when and where people have visited certain locations. From these records, next POI recommendation suggests the next POI that a target user might want to visit based on their check-in history and current spatio-temporal context. Current next POI recommendation methods mainly apply different deep learning models to capture user preferences by learning the nonlinear relations between POIs and user preference and pay little attention to mining or using the information that explicitly reflects user preference. In contrast, this paper proposes to utilize data that explicitly reflect user preference and include these data in a deep learning-based process to better capture user preference. Based on the self-attention network, this paper utilizes the attributes of the month of the check-ins and the categories of check-ins during this time, which indicate the periodicity of the user’s work and life and can reflect the habits of users. Moreover, considering that distance has a significant impact on a user’s decision of whether to visit a POI, we used a filter to remove candidate POIs that were more than a certain distance away when recommending the next POIs. We use check-in data from New York City (NYC) and Tokyo (TKY) as datasets, and experiments show that these improvements improve the recommended performance of the next POI. Compared with the state-of-the-art methods, the proposed method improved the recall rate by 7.32% on average. Numéro de notice : A2022-647 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080440 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.3390/ijgi11080440 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101463
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 440[article]Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks / Hang Zhang in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
[article]
Titre : Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Mingxin Gan, Auteur ; Xi Sun, Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] comportement
[Termes IGN] filtrage d'information
[Termes IGN] interprétation (psychologie)
[Termes IGN] mémoire
[Termes IGN] mobilité humaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau social géodépendant
[Termes IGN] tourismeRésumé : (auteur) In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Numéro de notice : A2021-148 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010036 Date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/ijgi10010036 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97056
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]How do species and data characteristics affect species distribution models and when to use environmental filtering? / Lukáš Gábor in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)PermalinkLearning evolving user’s behaviors on location-based social networks / Ruizhi Wu in Geoinformatica, vol 24 n° 3 (July 2020)PermalinkA Single Model CNN for Hyperspectral Image Denoising / Alessandro Maffei in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)PermalinkUsing real polar ground gravimetry data to solve the GOCE polar gap problem in satellite-only gravity field recovery / Biao Lu in Journal of geodesy, Vol 94 n°3 (March 2020)PermalinkPermalinkPerSE : visual analytics for calendar related spatiotemporal periodicity detection and analysis / Brian Swedberg in Geoinformatica, vol 21 n° 3 (July - September 2017)PermalinkConstrained clustering by constraint programming / Thi-Bich-Hanh Dao in Artificial intelligence, vol 244 (March 2017)PermalinkUsing seal trajectories in biological early warning system for real-time zone tracking / Rouaa Wannous in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 21 n° 4 (juillet - août 2016)PermalinkVérification automatique d’exigences pour les politiques d’échange d’information. Exigences de diffusion et de non-diffusion d'information / Rémi Delmas in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 21 n° 2 (mars - avril 2016)PermalinkPermalink