Descripteur
Documents disponibles dans cette catégorie (13)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Data-driven gap filling and spatio-temporal filtering of the GRACE and GRACE-FO records / Louis-Marie Gauer in Journal of geophysical research : Solid Earth, vol 128 n° 5 (May 2023)
[article]
Titre : Data-driven gap filling and spatio-temporal filtering of the GRACE and GRACE-FO records Type de document : Article/Communication Auteurs : Louis-Marie Gauer, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur Année de publication : 2023 Projets : TOSCA HYDROGEODESY / Article en page(s) : n° e2022JB025561 Note générale : bibliographie
This study was supported by the CNES-TOSCA HYDROGEODESY project.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données GRACE
[Termes IGN] filtrage spatiotemporel
[Termes IGN] traitement de données localisées
[Termes IGN] valeur aberranteRésumé : (auteur) Gravity Recovery And Climate Experiment and Follow On (GRACE/-FO) global monthly measurements of Earth's gravity field have led to significant advances in quantifying mass transfer. However, a significant temporal gap between missions hinders evaluating long-term mass variations. Moreover, instrumental and processing errors translate into large non-physical North-South stripes polluting geophysical signals. We use Multichannel Singular Spectrum Analysis (M-SSA) to overcome both issues by exploiting spatio-temporal information of Level-2 GRACE/-FO solutions, filtered using the DDK7 decorrelation and a new complementary filter, built based on the residual noise between fully processed data and a parametric fit to observations. Using an iterative M-SSA on Equivalent Water Height (EWH) time series processed by Center of Space Research, GeoForschungsZentrum, Institute of Geodesy at Graz University of Technology, and Jet Propulsion Laboratory, we replace missing data and outliers to obtain a combined evenly sampled solution. Then, we apply M-SSA to retrieve common signals between each EWH time series and its same-latitude neighbors to further reduce residual spatially uncorrelated noise. Comparing GRACE/-FO M-SSA solution with Satellite Laser Ranging and Swarm low-degree Earth's gravity field and hydrological model demonstrates its ability to satisfyingly fill missing observations. Our solution achieves a noise level comparable to mass concentration (mascon) solutions over oceans (3.0 mm EWH), without requiring a priori information nor regularization. While short-wavelength signals are challenging to capture using highly filtered spherical harmonics or mascons solutions, we show that our technique efficiently recovers localized mass variations using well-documented mass transfers associated with reservoir impoundments. Numéro de notice : A2023-096 Affiliation des auteurs : UMR IPGP-Géod (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2022JB025561 En ligne : https://doi.org/10.1029/2022JB025561 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103213
in Journal of geophysical research : Solid Earth > vol 128 n° 5 (May 2023) . - n° e2022JB025561[article]Fusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)
[article]
Titre : Fusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California Type de document : Article/Communication Auteurs : Huineng Yan, Auteur ; Wujiao Dai, Auteur ; Lei Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] faille géologique
[Termes IGN] filtrage spatiotemporel
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modélisation spatiale
[Termes IGN] rééchantillonnage
[Termes IGN] série temporelleRésumé : (auteur) The spatio-temporal random effects (STRE) model is a classic dynamic filtering model, which can be used to fuse GNSS and InSAR deformation data. The STRE model uses a certain time span of high spatial resolution Interferometric Synthetic Aperture Radar (InSAR) time series data to establish a spatial model and then obtain a deformation result with high spatio-temporal resolution through the state transition equation recursively in time domain. Combined with the Kalman filter, the STRE model is continuously updated and modified in time domain to obtain higher accuracy result. However, it relies heavily on the prior information and personal experience to establish an accurate spatial model. To the authors' knowledge, there are no publications which use the STRE model with multiple sets of different deformation monitoring data to verify its applicability and reliability. Here, we propose an improved STRE model to automatically establish accurate spatial model to improve the STRE model, then apply it to the fusion of GNSS and InSAR deformation data in the San Francisco Bay Area covering approximately 6000 km2 and in Southern California covering approximately 100,000 km2. Our experimental results show that the improved STRE model can achieve good fusion effects in both study areas. For internal inspection, the average error RMS values in the two regions are 0.13 mm and 0.06 mm for InSAR and 2.4 and 2.8 mm for GNSS, respectively; for Jackknife cross-validation, the average error RMS values are 6.0 and 1.3 mm for InSAR and 4.3 and 4.8 mm for GNSS in the two regions, respectively. We find that the deformation rate calculated from the fusion results is highly consistent with the existing studies, the significant difference in the deformation rate on both sides of the major faults in the two regions can be clearly seen, and the area with abnormal deformation rate corresponds well to the actual situation. These results indicate that the improved STRE model can reduce the reliance on prior information and personal experience, realize the effective fusion of GNSS and InSAR deformation data in different regions, and also has the advantages of high accuracy and strong applicability. Numéro de notice : A2022-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/s00190-022-01636-7 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.1007/s00190-022-01636-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101165
in Journal of geodesy > vol 96 n° 7 (July 2022) . - n° 47[article]Framework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
[article]
Titre : Framework for automatic coral reef extraction using Sentinel-2 image time series Type de document : Article/Communication Auteurs : Qizhi Zhang, Auteur ; Jian Zhang, Auteur ; Liang Cheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 195 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage de points
[Termes IGN] filtrage spatiotemporel
[Termes IGN] image Sentinel-MSI
[Termes IGN] mesure de similitude
[Termes IGN] nébulosité
[Termes IGN] récif corallien
[Termes IGN] série temporelleRésumé : (auteur) Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef. Numéro de notice : A2022-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/01490419.2022.2051648 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2051648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100550
in Marine geodesy > vol 45 n° 3 (May 2022) . - pp 195 - 231[article]Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm / Mritunjay Kumar Singh in Geocarto international, vol 36 n° 20 ([01/12/2021])
[article]
Titre : Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm Type de document : Article/Communication Auteurs : Mritunjay Kumar Singh, Auteur ; Renoj J. Thayyen, Auteur ; Sanjay K. Jain, Auteur Année de publication : 2021 Article en page(s) : pp 2279 - 2302 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bassin hydrographique
[Termes IGN] bilan de masse
[Termes IGN] changement climatique
[Termes IGN] eau de fonte
[Termes IGN] filtrage spatiotemporel
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] Inde
[Termes IGN] manteau neigeux
[Termes IGN] MNS ASTER
[Termes IGN] nébulosité
[Termes IGN] nuage
[Termes IGN] variation saisonnièreRésumé : (auteur) This research paper proposes a new five-step protocol to enhance the result of existing cloud removal algorithms using Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products (SCPs). The study has been carried out for the upper Bhagirathi basin (up to Maneri Hydropower Project) located in the Western Himalaya. Gafurov and Bárdossy test employed to validate the performance of the proposed method, followed by comparing with the field observed snow cover duration (SCD) data. The result shows that the mean overall accuracy of the proposed method for cloud removal is about ∼95%. However, the cloud removal method by Gafurov and Bardossy also achieved similar mean overall accuracy but with the higher variability within the individual images as compared with the variability within the results obtained by the proposed method. SCD computed from cloud removed SCPs matched significantly with the field observed SCD for a point location, supporting the accuracy achieved by the cloud removal method. This study also examines the spatiotemporal variability of the snow cover in the study area during the past 18 years (2000–2018). During the observation period, no specific trend was observed for annual maximum snow cover, while yearly minimum snow cover in the basin showed an increasing trend since 2010. Seasonally, December and June month witnessed significant changes. December experienced a declining trend in snow cover between 3000–6000 m a.s.l. covering 88% of the basin area, whereas, June showed an increasing trend between 4500 to 6000 m (a.s.l.). This elevation range covers 61% of the basin area, including core 86% of the glacier area within the basin. September and October experienced the highest inter-annual snow cover variability. Maximum snow cover month of February and minimum snow cover month of August experienced the least variability. The present study suggests significant elevation-dependent increasing as well as the decreasing trend in the snow cover with seasonal contrast, which may affect the glaciers as well as the hydrological behavior of the basin. Numéro de notice : A2021-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1704069 Date de publication en ligne : 19/12/2021 En ligne : https://doi.org/10.1080/10106049.2019.1704069 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99005
in Geocarto international > vol 36 n° 20 [01/12/2021] . - pp 2279 - 2302[article]Dynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)
[article]
Titre : Dynamic human body reconstruction and motion tracking with low-cost depth cameras Type de document : Article/Communication Auteurs : Kangkan Wang, Auteur ; Guofeng Zhang, Auteur ; Jian Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 603 - 618 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement de formes
[Termes IGN] déformation de projection
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] filtrage spatiotemporel
[Termes IGN] maillage
[Termes IGN] modèle dynamique
[Termes IGN] modélisation 3D
[Termes IGN] objet mobile
[Termes IGN] reconstruction d'objet
[Termes IGN] squelettisationRésumé : (auteur) We present a novel approach for dynamic human body reconstruction and motion tracking using low-cost depth cameras. Our reconstruction system is able to produce a sequence of dynamic 3D human body models from the noisy input depth data. To accurately align the template model with noisy input data, we combine skeleton-driven deformation and mesh deformation techniques to enhance the registration robustness to depth missing, occlusions, and severe noise. In addition, a novel data-driven 3D human body model is introduced to efficiently reconstruct human body models with wide shape and pose variations only using a limited number of training databases with standard standing pose. We perform quantitative and qualitative experiments to evaluate our method and compare it with other methods for body reconstruction on both synthetic and real datasets. Experimental results demonstrate the effectiveness of the proposed approach. Numéro de notice : A2021-341 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01826-4 Date de publication en ligne : 26/02/2020 En ligne : https://doi.org/10.1007/s00371-020-01826-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97579
in The Visual Computer > vol 37 n° 3 (March 2021) . - pp 603 - 618[article]Mining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)PermalinkA sequential Monte Carlo framework for noise filtering in InSAR time series / Mehdi Khaki in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)Permalink3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets / Hessah Albanwan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)PermalinkData-adaptive spatio-temporal filtering of GRACE data / Paoline Prevost in Geophysical journal international, vol 219 n° 3 (December 2019)PermalinkMicrowave indices from active and passive sensors for remote sensing applications / Emanuele Santi (2019)PermalinkSpatio-temporal filtering for determination of common mode error in regional GNSS networks / Janusz Bogusz in Open geosciences, vol 7 n° 1 (January 2015)PermalinkSpatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis / Yunzhong Shen in Journal of geodesy, vol 88 n° 1 (January 2014)PermalinkDesigning origin-destination flow matrices from individual mobile phone paths : the effect of spatiotemporal filtering on flow measurement / Françoise Bahoken (2013)Permalink