Détail de l'auteur
Auteur M.M. Dundar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A model-based mixture-supervised classification approach in hyperspectral data analysis / M.M. Dundar in IEEE Transactions on geoscience and remote sensing, vol 40 n° 12 (December 2002)
[article]
Titre : A model-based mixture-supervised classification approach in hyperspectral data analysis Type de document : Article/Communication Auteurs : M.M. Dundar, Auteur ; D. Landgrebe, Auteur Année de publication : 2002 Article en page(s) : pp 2692 - 2699 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] covariance
[Termes IGN] image hyperspectraleRésumé : (Auteur) It is well known that there is a strong relation between class definition precision and classification accuracy in pattern classification applications. In hyperspectral data analysis, usually classes of interest contain one or more components and may not be well represented by a single Gaussian density function. In this paper, a model-based mixture classifier, which uses mixture models to characterize class densities, is discussed. However, a key outstanding problem of this approach is how to choose the number of components and determine their parameters for such models in practice, and to do so in the face of limited training sets where estimation error becomes a significant factor. The proposed classifier estimates the number of subclasses and class statistics simultaneously by choosing the best model. The structure of class' s covariances is also addressed through a model-based covariance estimation technique introduced in this paper. Numéro de notice : A2002-351 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2002.807010 En ligne : https://doi.org/10.1109/TGRS.2002.807010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22262
in IEEE Transactions on geoscience and remote sensing > vol 40 n° 12 (December 2002) . - pp 2692 - 2699[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-02121 RAB Revue Centre de documentation En réserve L003 Disponible