ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 4 n°4Paru le : 01/12/2015 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierImpacts of species misidentification on species distribution modeling with presence-only data / Hugo Costa in ISPRS International journal of geo-information, vol 4 n°4 (December 2015)
[article]
Titre : Impacts of species misidentification on species distribution modeling with presence-only data Type de document : Article/Communication Auteurs : Hugo Costa, Auteur ; Giles M. Foody, Auteur ; Silvia Jiménez, Auteur ; Luis Silva, Auteur Année de publication : 2015 Article en page(s) : pp 2496 - 2518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] erreur d'approximation
[Termes IGN] identification automatique
[Termes IGN] modèle de simulation
[Termes IGN] propagation d'erreurRésumé : (auteur) Spatial records of species are commonly misidentified, which can change the predicted distribution of a species obtained from a species distribution model (SDM). Experiments were undertaken to predict the distribution of real and simulated species using MaxEnt and presence-only data “contaminated” with varying rates of misidentification error. Additionally, the difference between the niche of the target and contaminating species was varied. The results show that species misidentification errors may act to contract or expand the predicted distribution of a species while shifting the predicted distribution towards that of the contaminating species. Furthermore the magnitude of the effects was positively related to the ecological distance between the species’ niches and the size of the error rates. Critically, the magnitude of the effects was substantial even when using small error rates, smaller than common average rates reported in the literature, which may go unnoticed while using a standard evaluation method, such as the area under the receiver operating characteristic curve. Finally, the effects outlined were shown to impact negatively on practical applications that use SDMs to identify priority areas, commonly selected for various purposes such as management. The results highlight that species misidentification should not be neglected in species distribution modeling. Numéro de notice : A2015--004 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/GEOMATIQUE Nature : Article DOI : 10.3390/ijgi4042496 Date de publication en ligne : 16/11/2015 En ligne : https://doi.org/10.3390/ijgi4042496 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101798
in ISPRS International journal of geo-information > vol 4 n°4 (December 2015) . - pp 2496 - 2518[article]