[n° ou bulletin]
est un bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences / International society for photogrammetry and remote sensing (1980 -) (2012 - )
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierForest inventory attribute estimation using airborne laser scanning, aerial stereo imagery, radargrammetry and interferometry–Finnish experiences of the 3D techniques / Markus Holopainen in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3 W4 (March 2015)
[article]
Titre : Forest inventory attribute estimation using airborne laser scanning, aerial stereo imagery, radargrammetry and interferometry–Finnish experiences of the 3D techniques Type de document : Article/Communication Auteurs : Markus Holopainen, Auteur ; Mikko Vastaranta, Auteur ; Mika Karjalainen, Auteur ; et al., Auteur Année de publication : 2015 Conférence : ISPRS 2015, PIA 2015 - HRIGI 2015 Joint ISPRS conference 25/03/2015 27/03/2015 Munich Allemagne ISPRS OA Annals Article en page(s) : pp 63 - 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface
[Termes IGN] placette d'échantillonnage
[Termes IGN] radargrammétrie
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences. Numéro de notice : A2015-756 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprsannals-II-3-W4-63-2015 En ligne : http://dx.doi.org/10.5194/isprsannals-II-3-W4-63-2015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78752
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol II-3 W4 (March 2015) . - pp 63 - 69[article]Extracting mobile objects in images using a Velodyne lidar point cloud / Bruno Vallet in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3 W4 (March 2015)
[article]
Titre : Extracting mobile objects in images using a Velodyne lidar point cloud Type de document : Article/Communication Auteurs : Bruno Vallet , Auteur ; Wen Xiao, Auteur ; Mathieu Brédif , Auteur Année de publication : 2015 Conférence : ISPRS 2015, PIA 2015 - HRIGI 2015 Joint ISPRS conference 25/03/2015 27/03/2015 Munich Allemagne ISPRS OA Annals Article en page(s) : pp 247 - 253 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme Graph-Cut
[Termes IGN] architecture pipeline (processeur)
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image terrestre
[Termes IGN] objet mobile
[Termes IGN] semis de points
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) This paper presents a full pipeline to extract mobile objects in images based on a simultaneous laser acquisition with a Velodyne scanner. The point cloud is first analysed to extract mobile objects in 3D. This is done using Dempster-Shafer theory and it results in weights telling for each points if it corresponds to a mobile object, a fixed object or if no decision can be made based on the data (unknown). These weights are projected in an image acquired simultaneously and used to segment the image between the mobile and the static part of the scene. Numéro de notice : A2015-757 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprsannals-II-3-W4-247-2015 Date de publication en ligne : 11/03/2015 En ligne : http://dx.doi.org/10.5194/isprsannals-II-3-W4-247-2015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78753
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol II-3 W4 (March 2015) . - pp 247 - 253[article]Road marking extraction using a model&data-driven RJ-MCMC / Alexandre Hervieu in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3 W4 (March 2015)
[article]
Titre : Road marking extraction using a model&data-driven RJ-MCMC Type de document : Article/Communication Auteurs : Alexandre Hervieu , Auteur ; Bahman Soheilian , Auteur ; Mathieu Brédif , Auteur Année de publication : 2015 Conférence : ISPRS 2015, PIA 2015 - HRIGI 2015 Joint ISPRS conference 25/03/2015 27/03/2015 Munich Allemagne ISPRS OA Annals Article en page(s) : pp 47 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] espace image
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] orthoimage
[Termes IGN] projection orthogonale
[Termes IGN] signalisation routièreMots-clés libres : reversible-jump Markov chain Monte Carlo Résumé : (auteur) We propose an integrated bottom-up/top-down approach to road-marking extraction from image space. It is based on energy minimization using marked point processes. A generic road marking object model enable us to define universal energy functions that handle various types of road-marking objects (dashed-lines, arrows, characters, etc.). A RJ-MCMC sampler coupled with a simulated annealing is applied to find the configuration corresponding to the minimum of the proposed energy. We used input data measurements to guide the sampler process (data driven RJ-MCMC). The approach is enhanced with a model-driven kernel using preprocessed autocorrelation and inter-correlation of road-marking templates, in order to resolve type and transformation ambiguities. The method is generic and can be applied to detect road-markings in any orthogonal view produced from optical sensors or laser scanners from aerial or terrestrial platforms. We show the results an ortho-image computed from ground-based laser scanning. Numéro de notice : A2015-758 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprsannals-II-3-W4-47-2015 Date de publication en ligne : 11/05/2015 En ligne : http://dx.doi.org/10.5194/isprsannals-II-3-W4-47-2015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78754
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol II-3 W4 (March 2015) . - pp 47 - 54[article]Documents numériques
en open access
Road marking extractionAdobe Acrobat PDF Contextual classification of point cloud data by exploiting individual 3d neigbourhoods / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3 W4 (March 2015)
[article]
Titre : Contextual classification of point cloud data by exploiting individual 3d neigbourhoods Type de document : Article/Communication Auteurs : Martin Weinmann, Auteur ; A. Schmidt, Auteur ; Clément Mallet , Auteur ; Stefan Hinz, Auteur ; Franz Rottensteiner, Auteur ; Boris Jutzi, Auteur Année de publication : 2015 Conférence : ISPRS 2015, PIA 2015 - HRIGI 2015 Joint ISPRS conference 25/03/2015 27/03/2015 Munich Allemagne ISPRS OA Annals Article en page(s) : pp 271 - 278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification contextuelle
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) The fully automated analysis of 3D point clouds is of great importance in photogrammetry, remote sensing and computer vision. For reliably extracting objects such as buildings, road inventory or vegetation, many approaches rely on the results of a point cloud classification, where each 3D point is assigned a respective semantic class label. Such an assignment, in turn, typically involves statistical methods for feature extraction and machine learning. Whereas the different components in the processing workflow have extensively, but separately been investigated in recent years, the respective connection by sharing the results of crucial tasks across all components has not yet been addressed. This connection not only encapsulates the interrelated issues of neighborhood selection and feature extraction, but also the issue of how to involve spatial context in the classification step. In this paper, we present a novel and generic approach for 3D scene analysis which relies on (i) individually optimized 3D neighborhoods for (ii) the extraction of distinctive geometric features and (iii) the contextual classification of point cloud data. For a labeled benchmark dataset, we demonstrate the beneficial impact of involving contextual information in the classification process and that using individual 3D neighborhoods of optimal size significantly increases the quality of the results for both pointwise and contextual classification. Numéro de notice : A2015--052 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprsannals-II-3-W4-271-2015 Date de publication en ligne : 11/03/2015 En ligne : http://dx.doi.org/10.5194/isprsannals-II-3-W4-271-2015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82698
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol II-3 W4 (March 2015) . - pp 271 - 278[article]Documents numériques
en open access
Contextual classification of point cloud data ... - pdf éditeurAdobe Acrobat PDF