Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 828 - 840 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Green Leaf Area Index
[Termes IGN] image Gaofen
[Termes IGN] image HJ-1A
[Termes IGN] image HJ-1B
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice foliaire
[Termes IGN] modèle de régression
[Termes IGN] rizièreRésumé : (auteur) Optical satellite imagery has been widely used to monitor leaf area index (LAI). However, most studies have focussed on single- or dual-source data, thus making little use of a growing repository of freely available optical imagery. Hence this study has evaluated the feasibility of quad-source optical satellite imagery involving Landsat-8, Sentinel-2A, China’s environment satellite constellation (HJ-1 A and B) and Gaofen-1 (GF-1) in modelling rice green LAI over a test site located in southeast China at two growing seasons. With the application of machine learning regression models including Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbour (k-NN) and Gradient Boosting Decision Tree (GBDT), results indicated that regression models based on an ensemble of decision trees (RF and GBDT) were more suitable for modelling rice green LAI. The current study has demonstrated the feasibility of quad-source optical imagery in modelling rice green LAI and this is relevant for cloudy areas. Numéro de notice : A2022-346 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1745299 Date de publication en ligne : 03/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1745299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100530
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 828 - 840[article]Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model / Xinyun Wang in Geocarto international, vol 33 n° 2 (February 2018)
[article]
Titre : Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model Type de document : Article/Communication Auteurs : Xinyun Wang, Auteur ; Yige Guo, Auteur ; Jie He, Auteur ; Lingtong Du, Auteur ; Tianhua Hu, Auteur Année de publication : 2018 Article en page(s) : pp 148 - 162 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] image HJ-1B
[Termes IGN] juniperus (genre)
[Termes IGN] modèle de croissance végétale
[Termes IGN] Pinophyta
[Termes IGN] Pinus (genre)
[Termes IGN] Populus (genre)
[Termes IGN] réflectance végétale
[Termes IGN] steppe
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] Ulmus (genre)Mots-clés libres : stochastic Gradient boosting Résumé : (Auteur) Accurately estimating the spatial distribution of forest aboveground biomass (AGB) is important because of its carbon budget forms part of the global carbon cycle. This paper presented three methods for obtaining forest AGB based on a forest growth model, a Multiple-Forward-Mode (MFM) method and a stochastic gradient boosting (SGB) model. A Li-Strahler geometric-optical canopy reflectance model (GOMS) with the ZELIG forest growth model was run using HJ1B imagery to derive forest AGB. GOMS-ZELIG simulated data were used to train the SGB model and AGB estimation. The GOMS-ZELIG AGB estimation was evaluated for 24 field-measured data and compared against the GOMS-SGB model and GOMS-MFM biomass predictions from multispectral HJ1B data. The results show that the estimation accuracy of the GOMS-MFM model is slightly higher than that of the GOMS-SGB model. The GOMS-ZELIG and GOMS-MFM models are considerably more accurate at estimating forest AGB in arid and semiarid regions. Numéro de notice : A2018-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1232438 En ligne : https://doi.org/10.1080/10106049.2016.1232438 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89205
in Geocarto international > vol 33 n° 2 (February 2018) . - pp 148 - 162[article]Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping / Yifang Ban in IEEE Transactions on geoscience and remote sensing, vol 51 n° 4 Tome 1 (April 2013)
[article]
Titre : Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping Type de document : Article/Communication Auteurs : Yifang Ban, Auteur ; Alexender Jacob, Auteur Année de publication : 2013 Article en page(s) : pp 1998 - 2006 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] carte d'occupation du sol
[Termes IGN] conflation
[Termes IGN] fusion de données multisource
[Termes IGN] image Envisat-ASAR
[Termes IGN] image HJ-1B
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation d'image
[Termes IGN] zone urbaineRésumé : (Auteur) The objectives of this research are to develop robust methods for segmentation of multitemporal synthetic aperture radar (SAR) and optical data and to investigate the fusion of multitemporal ENVISAT advanced synthetic aperture radar (ASAR) and Chinese HJ-1B multispectral data for detailed urban land-cover mapping. Eight-date multiangle ENVISAT ASAR images and one-date HJ-1B charge-coupled device image acquired over Beijing in 2009 are selected for this research. The edge-aware region growing and merging (EARGM) algorithm is developed for segmentation of SAR and optical data. Edge detection using a Sobel filter is applied on SAR and optical data individually, and a majority voting approach is used to integrate all edge images. The edges are then used in a segmentation process to ensure that segments do not grow over edges. The segmentation is influenced by minimum and maximum segment sizes as well as the two homogeneity criteria, namely, a measure of color and a measure of texture. The classification is performed using support vector machines. The results show that our EARGM algorithm produces better segmentation than eCognition, particularly for built-up classes and linear features. The best classification result (80%) is achieved using the fusion of eight-date ENVISAT ASAR and HJ-1B data. This represents 5%, 11%, and 14% improvements over eCognition, HJ-1B, and ASAR classifications, respectively. The second best classification is achieved using fusion of four-date ENVISAT ASAR and HJ-1B data (78%). The result indicates that fewer multitemporal SAR images can achieve similar classification accuracy if multitemporal multiangle dual-look-direction SAR data are carefully selected. Numéro de notice : A2013-213 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2236560 En ligne : https://doi.org/10.1109/TGRS.2012.2236560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32351
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 4 Tome 1 (April 2013) . - pp 1998 - 2006[article]