Descripteur
Documents disponibles dans cette catégorie (28)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Semi-supervised label propagation for multi-source remote sensing image change detection / Fan Hao in Computers & geosciences, vol 170 (January 2023)
[article]
Titre : Semi-supervised label propagation for multi-source remote sensing image change detection Type de document : Article/Communication Auteurs : Fan Hao, Auteur ; Zong-Fang Ma, Auteur ; Hong Peng Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 105249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification pixellaire
[Termes IGN] détection de changement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] étiquette
[Termes IGN] filtrage du bruit
[Termes IGN] image multi sourcesRésumé : (auteur) Remote sensing image change detection remains a challenging task. Most existing approaches are based on fully supervised learning, but labeled data are so scarce for change detection. It is difficult to exhibit high detection performance with a limited amount of labeled data. In this paper, we propose a semi-supervised Label Propagation (SSLP) approach for multi-source remote sensing image change detection. First, a clustering label propagation (CLP) method is designed to cluster pre and post images, respectively, and assign pseudo labels to unlabeled pixel pairs that have similar mapping relationships to labeled pixel pairs. Second, a pixel density metric is investigated to filter out the data with low density and retain the data with high density, which can ensure the reliability of the propagated data. Third, a secondary expansion method based on pixel neighborhood is used to generate enough training data for training a classifier. Finally, the effectiveness of SSLP is validated on three real datasets by comparing to other related methods. Numéro de notice : A2023-032 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105249 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105249 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102292
in Computers & geosciences > vol 170 (January 2023) . - n° 105249[article]Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval / Dimitri Gominski (2021)
Titre : Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval Type de document : Article/Communication Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet , Auteur ; Liming Chen, Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2021 Projets : Alegoria / Gouet-Brunet, Valérie Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multi sources
[Termes IGN] indexation sémantique
[Termes IGN] précision de la classification
[Termes IGN] recherche d'image basée sur le contenuRésumé : (auteur) With impressive results in applications relying on feature learning, deep learning has also blurred the line between algorithm and data. Pick a training dataset, pick a backbone network for feature extraction, and voilà; this usually works fora variety of use cases. But the underlying hypothesis that there exists a training dataset matching the use case is not alwaysmet. Moreover, the demand for interconnections regardless of the variations of the content calls for increasing generalization and robustness in features. An interesting application characterized by these problematics is the connection of historical and cultural databases of images.Through the seemingly simple task of instance retrieval, wepropose to show that it is not trivial to pick features respondingwell to a panel of variations and semantic content. Introducing anew enhanced version of the ALEGORIA benchmark, we compare descriptors using the detailed annotations. We further give in sights about the core problems in instance retrieval, testing fourstate-of-the-art additional techniques to increase performance. Numéro de notice : P2021-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2103.10729 Date de publication en ligne : 21/03/2021 En ligne : https://doi.org/10.48550/arXiv.2103.10729 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97398 Description et recherche d’image généralisables pour l’interconnexion et l’analyse multi-source / Dimitri Gominski (2021)
Titre : Description et recherche d’image généralisables pour l’interconnexion et l’analyse multi-source Type de document : Thèse/HDR Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet , Directeur de thèse ; Liming Chen, Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2021 Autre Editeur : Lyon : Ecole Centrale de Lyon Projets : Alegoria / Gouet-Brunet, Valérie Note générale : bibliographie
thèse soutenue le 9 nov. 2021, à l'Université Gustave Eiffel, dans le cadre de l'École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication, en partenariat avec LaSTIG - Laboratoire en Sciences et Technologies de l'Information Géographique (laboratoire).Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image multi sources
[Termes IGN] indexation sémantique
[Termes IGN] méthode robuste
[Termes IGN] recherche d'image basée sur le contenuIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Avec un volume toujours plus grand d'images accessibles numériquement, établir des connexions pour structurer et analyser les données devient d'autant plus important. Une formulation typique pour connecter entre elles des images sans utiliser de métadonnées est la recherche d'image basée contenu (RIBC). Similairement aux autres applications en vision par ordinateur, la RIBC a bénéficié du pouvoir expressif des réseaux de neurones convolutifs (CNN) et obtenu des résultats inédits sur les benchmarks usuels. Cependant, il est difficile de dire si cette performance est due à la proposition d'architectures et de modèles toujours plus évolués, ou simplement à la présence d'un jeu de données d'entraînement qui correspond bien au cas d'usage, c'est-à-dire qui a des caractéristiques visuelles et sémantiques similaires. En effet, le paradigme habituel du couple modèle-jeu d'entraînement montre ses limites dès lors qu'on sort du cas caractérisé par les données d'entraînement: la performance chute si on teste sur des données différentes ou avec une variabilité trop grande.
Cette thèse s'intéresse à cette question avec un regard critique sur les méthodes d'apprentissage profond et leur potentiel réel d'application. Dans un contexte d'imagerie territoriale multi-sources, un benchmark est proposé pour caractériser un nouveau problème de recherche : la recherche d'image hétérogène, "low-data" (sans données d'entraînement), avec un cas d'utilisation où définir un jeu de données d'entraînement et une méthode "baseline" n'est pas facile. Avec ce benchmark, de nouvelles mesures sont proposées pour qualifier la capacité à généraliser du modèle dans un contexte RIBC, puis des solutions techniques qui permettent de s'affranchir de la définition hasardeuse des sus-citées "caractéristiques visuelles et sémantiques similaires". La discussion autour des résultats permet de mettre en valeur une importance probablement trop grande donnée à l'architecture des réseaux de neurones, et des pistes prometteuses dans la RIBC qui fournit des outils agnostiques du modèle utilisé, et permettant d'exploiter les avantages comparatifs de différents modèles entraînés sur différents jeux de données. Enfin, l'intérêt de cette approche généraliste est confirmé par une application à un cas où malgré l'abondance de méthodes et de données, elles sont encapsulées dans un ensemble de petits datasets et donc peu généralisables: la classification d'occupation au sol en imagerie satellite.Numéro de notice : 14738 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers theses Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse : : Gustave Eiffel : 2021 Organisme de stage : LaSTIG (IGN) & LIRIS (Ecole Centrale de Lyon) nature-HAL : Thèse DOI : sans En ligne : https://theses.hal.science/tel-03629550 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98921 Building facade reconstruction using crowd-sourced photos and two-dimensional maps / Wu Jie in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
[article]
Titre : Building facade reconstruction using crowd-sourced photos and two-dimensional maps Type de document : Article/Communication Auteurs : Wu Jie, Auteur ; Junya Mao, Auteur ; Song Chen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 677 - 694 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées des bénévoles
[Termes IGN] données vectorielles
[Termes IGN] édition en libre accès
[Termes IGN] façade
[Termes IGN] image multi sources
[Termes IGN] implémentation (informatique)
[Termes IGN] reconstruction 2D du bâti
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (Auteur) To address the high-cost problem of the current three-dimensional (3D) reconstruction for urban buildings, a new technical framework is proposed to generate 3D building facade information using crowd-sourced photos and two-dimensional (2D) building vector data in this paper. The crowd-sourced photos mainly consisted of Tencent street view images and other-source photos, which were collected from three platforms, including search engines, social media, and mobile phones. The photos were selected and grouped first, and then a structure from motion algorithm was used for 3D reconstruction. Finally, the reconstructed point clouds were registered with 2D building vector data. The test implementation was conducted in the Jianye District of Nanjing, China, and the generated point clouds showed a good fit with the true values. The proposed 3D reconstruction method represents a multi-sourced data integration process. The advantage of the proposed approach lies in the open source and low-cost data used in this study. Numéro de notice : A2020-708 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.11.677 Date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.14358/PERS.86.11.677 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96393
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 11 (November 2020) . - pp 677 - 694[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020111 SL Revue Centre de documentation Revues en salle Disponible A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Sébastien Bosch, Auteur ; Pascal Favé, Auteur ; Roland Gachet, Auteur ; Alain Orsoni , Auteur ; Thomas Tilak , Auteur ; Alexis Barot, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Gouet-Brunet, Valérie Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 15 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'images
[Termes IGN] compensation par bloc
[Termes IGN] données localisées de référence
[Termes IGN] formatage
[Termes IGN] image à très haute résolution
[Termes IGN] image multi sources
[Termes IGN] image satellite
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] image SPOT-HRS
[Termes IGN] informatique en nuage
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] point d'appui
[Termes IGN] spatiotriangulationRésumé : (auteur) High location accuracy is a major requirement for satellite image users. Target performance is usually achieved thanks to either specific on-board satellite equipment or an auxiliary registration reference dataset. Both methods may be expensive and with certain limitations in terms of performance. The Institut national de l’information géographique et forestière (IGN) and Airbus Defence and Space (ADS) have worked together for almost 20 years, to build reference data for improving image location using multi-satellite observations. The first geometric foundation created has mainly used SPOT 5 High Resolution Stereoscopic (HRS) imagery, ancillary Ground Control Points (GCP) and Very High Resolution (VHR) imagery, providing a homogenous location accuracy of 10m CE90 almost all over the world in 2010. Space Reference Points (SRP) is a new worldwide 3D GCP database, built from a plethoric SPOT 6/7 multi-view archive, largely automatically processed, with cloud-based technologies. SRP aims at providing a systematic and reliable solution for image location (Unmanned Aerial Vehicle, VHR satellite imagery, High Altitudes Pseudo-Satellite…) and similar topics thanks to a high-density point distribution with a 3m CE90 accuracy. This paper describes the principle of SRP generation and presents the first validation results. A SPOT 6/7 smart image selection is performed to keep only relevant images for SRP purpose. The location of these SPOT 6/7 images is refined thanks to a spatiotriangulation on the worldwide geometric foundation, itself improved where needed. Points making up the future SRP database are afterward extracted thanks to classical feature detection algorithms and with respect to the expected density. Different filtering methods are applied to keep the best candidates. The last step of the processing chain is the formatting of the data to the delivery format, including metadata. An example of validation of SRP concept and specification on two tests sites (Spain and China) is then given. As a conclusion, the on-going production is shortly presented. Numéro de notice : A2020-474 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-15-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95613
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 15 - 23[article]Convolutional neural networks for change analysis in earth observation images with noisy labels and domain shifts / Rodrigo Caye Daudt (2020)PermalinkDe l’image optique "multi-stéréo" à la topographie très haute résolution et la cartographie automatique des failles par apprentissage profond / Lionel Matteo (2020)PermalinkChallenging deep image descriptors for retrieval in heterogeneous iconographic collections / Dimitri Gominski (2019)PermalinkDouble projection planes method for generating enriched disparity maps from multi-view stereo satellite images / Suliman Alaeldin in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 11 (November 2017)PermalinkSuperresolution for UAV images via adaptive multiple sparse representation and its application to 3-D reconstruction / Muhammad Haris in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)PermalinkMultiple morphological component analysis based decomposition for remote sensing image classification / Xiang Xu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)PermalinkAccuracy analysis of a dual camera system with an asymmetric photogrammetric configuration / Bo Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 3 (March 2015)PermalinkMonitoring disasters with a constellation of satellites - type examples from the International Charter ‘Space and Major Disasters’ / A. Mahmood in Geocarto international, vol 27 n° 2 (March 2012)PermalinkRange of categorical associations for comparison of maps with mixed pixels / Robert Gilmore Pontius in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 8 (August 2009)PermalinkAn inexpensive stereo-image capture tool for motion study / A.K. Chong in Photogrammetric record, vol 22 n° 119 (September - November 2007)Permalink