Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design / Wangshu Mu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
[article]
Titre : Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2020 Article en page(s) : pp 2204 - 2224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] attribut géomètrique
[Termes IGN] carte choroplèthe
[Termes IGN] conception cartographique
[Termes IGN] erreur d'échantillon
[Termes IGN] incertitude d'attribut
[Termes IGN] incertitude des données
[Termes IGN] inférence statistique
[Termes IGN] méthode robuste
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Choropleth mapping provides a simple but effective visual presentation of geographical data. Traditional choropleth mapping methods assume that data to be displayed are certain. This may not be true for many real-world problems. For example, attributes generated based on surveys may contain sampling and non-sampling error, and results generated using statistical inferences often come with a certain level of uncertainty. In recent years, several studies have incorporated uncertain geographical attributes into choropleth mapping with a primary focus on identifying the most homogeneous classes. However, no studies have yet accounted for the possibility that an areal unit might be placed in a wrong class due to data uncertainty. This paper addresses this issue by proposing a robustness measure and incorporating it into the optimal design of choropleth maps. In particular, this study proposes a discretization method to solve the new optimization problem along with a novel theoretical bound to evaluate solution quality. The new approach is applied to map the American Community Survey data. Test results suggest a tradeoff between within-class homogeneity and robustness. The study provides an important perspective on addressing data uncertainty in choropleth map design and offers a new approach for spatial analysts and decision-makers to incorporate robustness into the mapmaking process. Numéro de notice : A2020-614 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1726921 Date de publication en ligne : 16/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1726921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95987
in International journal of geographical information science IJGIS > vol 34 n° 11 (November 2020) . - pp 2204 - 2224[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020111 RAB Revue Centre de documentation En réserve L003 Disponible Désambiguïsation des entités spatiales par apprentissage actif / Amal Chihaoui in Revue internationale de géomatique, vol 28 n° 2 (avril - juin 2018)
[article]
Titre : Désambiguïsation des entités spatiales par apprentissage actif Type de document : Article/Communication Auteurs : Amal Chihaoui, Auteur ; Asma Bouhafs, Auteur ; Mathieu Roche, Auteur ; Maguelonne Teisseire, Auteur Année de publication : 2018 Article en page(s) : pp 163 - 189 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage dirigé
[Termes IGN] corpus
[Termes IGN] échantillonnage
[Termes IGN] extraction automatique
[Termes IGN] incertitude d'attribut
[Termes IGN] toponyme
[Termes IGN] traitement du langage naturelRésumé : (Auteur) L’extraction de connaissances spatiales à partir de documents textuels peut être une tâche difficile du fait de l’ambiguïté propre au langage naturel. L'indisponibilité de gros volumes de données étiquetées rend difficile la mise-en-œuvre d’un processus de découverte automatique. Dans ce contexte, nous abordons le problème de la désambiguïsation des entités spatiales, entre " localisation" et "organisation" par apprentissage actif. D’abord, nous introduisons une méthode de résolution des toponymes basée sur une analyse lexicale et contextuelle. Ensuite, nous proposons une amélioration en intégrant un modèle d’apprentissage actif. Celui-ci permet de sélectionner automatiquement les données non étiquetées les plus informatives pour la notation humaine. Les expérimentations sont réalisées sur un corpus de "SemEval-2007" en anglais et soulignent l’amélioration du modèle d’apprentissage initial avec un étiquetage réduit. Numéro de notice : A2018-254 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/TOPONYMIE Nature : Article DOI : 10.3166/rig.2018.00053 Date de publication en ligne : 03/08/2018 En ligne : https://doi.org/10.3166/rig.2018.00053 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90315
in Revue internationale de géomatique > vol 28 n° 2 (avril - juin 2018) . - pp 163 - 189[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 047-2018021 SL Revue Centre de documentation Revues en salle Disponible A probabilistic framework for representing and simulating uncertain environmental variables / Gerard B.M. Heuvelink in International journal of geographical information science IJGIS, vol 21 n° 5 (may 2007)
[article]
Titre : A probabilistic framework for representing and simulating uncertain environmental variables Type de document : Article/Communication Auteurs : Gerard B.M. Heuvelink, Auteur ; J. Brown, Auteur ; E. Emiel Van Loon, Auteur Année de publication : 2007 Article en page(s) : pp 497 - 513 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] distribution, loi de
[Termes IGN] incertitude d'attribut
[Termes IGN] incertitude de position
[Termes IGN] incertitude des données
[Termes IGN] modèle stochastique
[Termes IGN] simulationRésumé : (Auteur) Understanding the limitations of environmental data is important for managing environmental systems effectively and for encouraging the responsible use of uncertain data. Explicit assessment of the uncertainties associated with environmental data, and their storage in a database, are therefore important. This paper presents a statistical framework for representing and simulating uncertain environmental variables. In general terms, an uncertain variable is completely specified by its probability distribution function (pdf). Pdfs are developed for objects with uncertain locations ('positional uncertainty') and uncertain attribute values ('attribute uncertainty'). Objects comprising multiple space-time locations are separated into 'rigid objects', where positional uncertainty cannot alter the internal geometry of the object, and 'deformable' objects, where positional uncertainty can vary between locations in one object. Statistical dependence is allowed between uncertainties in multiple locations in one object. The uncertainties associated with attribute values are also modelled with pdfs. The type and complexity of these pdfs depend upon the measurement scale and the space-time variability of the uncertain attribute. The framework is illustrated with examples. A prototype software tool for assessing uncertainties in environmental data, storing them within a database, and for generating realizations for use in Monte Carlo studies is also presented. Copyright Taylor & Francis Numéro de notice : A2007-133 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658810601063951 En ligne : https://doi.org/10.1080/13658810601063951 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28496
in International journal of geographical information science IJGIS > vol 21 n° 5 (may 2007) . - pp 497 - 513[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-07031 RAB Revue Centre de documentation En réserve L003 Disponible 079-07032 RAB Revue Centre de documentation En réserve L003 Disponible