Descripteur
Documents disponibles dans cette catégorie (37)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake / Cédric Twardzik in Earth and planetary science letters, vol 600 (15 December 2022)
[article]
Titre : Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake Type de document : Article/Communication Auteurs : Cédric Twardzik, Auteur ; Zacharie Duputel, Auteur ; Romain Jolivet, Auteur ; Emilie Klein, Auteur ; Paul Rebischung , Auteur Année de publication : 2022 Projets : SLES-S5 / Nocquet, Jean-Mathieu Article en page(s) : n° 117835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Chili
[Termes IGN] coordonnées GNSS
[Termes IGN] effondrement de terrain
[Termes IGN] inférence
[Termes IGN] matrice de covariance
[Termes IGN] séisme
[Termes IGN] série temporelle
[Termes IGN] sismologieRésumé : (auteur) We investigate the initiation phase of the 2014 Mw8.1 Iquique earthquake in northern Chile. In particular, we focus on the month preceding the mainshock, a time period known to exhibit an intensification of the seismic and aseismic activity in the region. The goal is to estimate the time-evolution and partitioning of seismic and aseismic slip during the preparatory phase of the mainshock. To do so, we develop a Bayesian inversion scheme to infer the spatio-temporal evolution of pre-slip from position time-series along with the corresponding uncertainty. To extract the aseismic component to the pre-seismic motion, we correct geodetic observations from the displacement induced by foreshocks. We find that aseismic slip accounts for ∼80 percents of the slip budget. That aseismic slip takes the form of a slow-slip events occurring between 20 to 5 days before the future mainshock. This time-evolution is not consistent with self-accelerating fault slip, a model that is often invoked to explain earthquake nucleation. Instead, the slow-slip event seems to have interacted with the foreshock sequence such that the foreshocks contributed to the arrest of aseismic slip. In addition, we observe some evidence of late self-accelerating slip, but associated with large uncertainties, making it difficult to assess its reliability from our observations alone. Numéro de notice : A2022-698 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2022.117835 Date de publication en ligne : 26/10/2022 En ligne : https://doi.org/10.1016/j.epsl.2022.117835 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102117
in Earth and planetary science letters > vol 600 (15 December 2022) . - n° 117835[article]Point-of-interest detection from Weibo data for map updating / Xue Yang in Transactions in GIS, vol 26 n° 6 (September 2022)
[article]
Titre : Point-of-interest detection from Weibo data for map updating Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Jie Gao, Auteur ; Xiaoyun Zheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2716 - 2738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] commerce de détail
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] géocodage
[Termes IGN] inférence
[Termes IGN] information sémantique
[Termes IGN] mise à jour cartographique
[Termes IGN] point d'intérêt
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Points-of-interest (POIs) geographic information system data are increasingly important for supporting map generation and navigation services, although updating their semantic and location information still largely depends on manual labor. In this study, we propose a novel method to automatically detect the changes in POIs from Chinese text and check-in position data provided by the Chinese social media platform, Weibo. The proposed method includes three steps: (1) POI name recognition; (2) location confirmation; (3) and change detection. First, we propose recognizing a POI's name from Weibo text using the improved conditional random field algorithm. Then, we detect the location of each named POI by integrating the text address with the check-in position. The changes in the detected POIs are recognized by extracting the status words from Weibo text and a three-level status word database. To verify the effectiveness of the proposed method, we examine Wuhan as a case and detect the changes in the commercial POI using real-world Weibo data collected from January to September 2020. Based on the validation of three common map platforms, the data provided and the manual field investigation of 55 random samples, the identification accuracies for newly added POIs, the unchanged POIs, and expired POIs are approximately 100, 95.8, and 91.7%, respectively. Numéro de notice : A2022-734 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12982 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12982 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101701
in Transactions in GIS > vol 26 n° 6 (September 2022) . - pp 2716 - 2738[article]Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)
Titre : Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods Type de document : Mémoire Auteurs : Clément Fougerouse, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 47 p. Format : 21 x 30 cm Note générale : Bibliographie
Rapport de projet pluridisciplinaire, cycle ING2Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] glace de mer
[Termes IGN] image Aqua-AMSR
[Termes IGN] image C-SAR
[Termes IGN] image radar moirée
[Termes IGN] inférence
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] restauration d'imageIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (Auteur) De nos jours, la détermination des glaces de mers se fait manuellement et est réalisée par des experts, les cartes obtenues ne sont donc pas bien précises et peuvent comporter des erreurs. L’objectif de l’étude est de pouvoir automatiser la classification des différents types de glaces de mer à partir d’images satellitaires SAR et AMSR2, en utilisant des réseaux de neurones convolutifs et d’améliorer la précision des réseaux déjà existants. Pour cela, nous partons des réseaux existants et nous rajoutons de nouvelles données d’apprentissages et nous modifions la structure du réseau de neurones convolutif. Puis nous étudions la texture des images pour pouvoir prendre en compte les formes des glaces et ainsi de créer plusieurs classes pour les glaces de mers. Que ce soit avec l’ajout de nouvelles données ou la modification de la structure du réseau, la précision des prédictions du réseau de neurones a grandement été amélioré. Nous passons d’une précision de 74% en moyenne sur les quatre classes utilisées à une moyenne de 95% après toutes les améliorations réalisées. Notons également, que la détection de la présence ou non de glace est très précise 98%. Quant à l’ajout des nouvelles classes et à la prise en compte de la texture des images satellitaires, nous obtenons des résultats très intéressants : le classificateur permet de distinguer certaines combinaisons, mais a du mal pour d’autres, notamment pour les glaces qui ont des petites formes. Ainsi, cette étude a permis d’améliorer considérablement la précision des réseaux existants pour classer la glace dans les quatre types habituels bien qu'ils restent moins performants pour classer en prenant en compte la forme des glaces. L’étude du caractère informatif a permis de connaitre les combinaisons détectées par la texture des images SAR. Note de contenu : 1. Introduction
2. Data used for training the CNN
2.1 NetCDF files
2.2 SAR data
2.3 AMSR2 data
2.4 Ice Chart
3. Processing
3.1 Overview
3.2 Statistical analysis
3.3 Preprocessing
3.3 Training
3.4 Inference
3.4 Baseline binary CNN
3.5 Baseline continuous CNN
3.6 Adding the larger area SAR data
3.7 Adding the AMSR2 data
3.8 Optimization
3.9 Experiments with informativeness
4. Results
4.1 Statistics
4.2 Baseline Binary
4.3 Hugo continuous
4.4 Extended SAR sub-image
4.5 AMSR2
4.6 Optimization
4.7 Informativeness tests
5. Conclusion and discussionNuméro de notice : 26868 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Nansen Environmental and Remote Sensing Center NERSC Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101688 Documents numériques
en open access
Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods - pdf auteurAdobe Acrobat PDF Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)
[article]
Titre : Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices Type de document : Article/Communication Auteurs : Linchuan Yang, Auteur ; Yuan Liang, Auteur ; Qing Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 273 - 284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de la valeur
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] bien immobilier
[Termes IGN] boosting adapté
[Termes IGN] Chine
[Termes IGN] Extreme Gradient Machine
[Termes IGN] inférence
[Termes IGN] logement
[Termes IGN] transport publicRésumé : (auteur) The adoption of bus rapid transit (BRT) systems has gained worldwide popularity over the past several decades. China is no exception as it has long been aiming at promoting public transportation. Prior studies have provided extensive evidence that BRT has substantial effects on house prices with traditional econometric techniques, such as hedonic pricing models. However, few of those investigations have discussed the non-linear relationship between BRT and house prices. Using the Xiamen data, this study employs a machine learning technique, namely the gradient boosting decision tree (GBDT), to scrutinize the non-linear relationship between BRT and house prices. This study documents a positive association between accessibility to BRT stations and house prices and a negative association between proximity to the BRT corridor and house prices. Moreover, it suggests a non-linear relationship between BRT and house prices and indicates that GBDT has more substantial predictive power than hedonic pricing models. Numéro de notice : A2021-629 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/19475683.2021.1906746 Date de publication en ligne : 27/03/2021 En ligne : https://doi.org/10.1080/19475683.2021.1906746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98270
in Annals of GIS > vol 27 n° 3 (July 2021) . - pp 273 - 284[article]A Bayesian displacement field approach to accurate registration of SAR images / Mingtao Ding in Geocarto international, vol 36 n° 9 ([15/05/2021])
[article]
Titre : A Bayesian displacement field approach to accurate registration of SAR images Type de document : Article/Communication Auteurs : Mingtao Ding, Auteur ; Hongyan Wang, Auteur ; Lichun Sui, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1007 - 1026 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] arc
[Termes IGN] enregistrement de données
[Termes IGN] estimation bayesienne
[Termes IGN] image radar moirée
[Termes IGN] implémentation (informatique)
[Termes IGN] inférence
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] processeur graphique
[Termes IGN] superposition d'images
[Termes IGN] transformationRésumé : (auteur) Precise registration of synthetic aperture radar (SAR) images is a nontrivial task since a change in radar-acquisition geometry generates image shifts. In existing system, either the transformation functions are oversimplified, or external measures such as digital elevation model and flight track are required to be precise. In this paper, we proposed a generative Bayesian approach to modelling the displacement vectors that map the position of each pixel in the image, thus avoiding degradation of the transformation function. Rather than providing a point estimate for the transformation function, the proposed method yields a full posterior density function of the transformation function. Especially, the Bayesian model learns all the parameters adaptively, and the procedure is fully automatic. The proposed model is comparable in accuracy to state-of-the-art optical flow methods on the challenging Sintel benchmarks, and outperforms currently published SAR image registration methods on some real SAR data with critical scenes. Numéro de notice : A2021-343 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1633418 Date de publication en ligne : 07/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1633418 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97584
in Geocarto international > vol 36 n° 9 [15/05/2021] . - pp 1007 - 1026[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021091 RAB Revue Centre de documentation En réserve L003 Disponible Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)PermalinkProbabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)PermalinkSherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level / Laura Di Rocco in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)PermalinkIlluminating the spatio-temporal evolution of the 2008–2009 Qaidam earthquake sequence with the joint use of Insar time series and teleseismic data / Simon Daout in Remote sensing, vol 12 n° 17 (September-1 2020)PermalinkCartographic inference: a peircean perspective / Gordon A. Cromley in Cartographica, vol 55 n° 2 (Summer 2020)PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)PermalinkA new segmentation method for the homogenisation of GNSS-derived IWV time-series / Annarosa Quarello (2020)PermalinkNonparametric Bayesian learning for collaborative robot multimodal introspection / Xuefeng Zhou (2020)PermalinkInferring user tasks in pedestrian navigation from eye movement data in real-world environments / Hua Liao in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkBayesian iterative reconstruction methods for 3D X-ray Computed Tomography / Camille Chapdelaine (2019)Permalink