Descripteur
Termes IGN > mathématiques > analyse numérique > interpolation > interpolation spatiale
interpolation spatiale |
Documents disponibles dans cette catégorie (117)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Understanding public perspectives on fracking in the United States using social media big data / Xi Gong in Annals of GIS, vol 29 n° 1 (January 2023)
[article]
Titre : Understanding public perspectives on fracking in the United States using social media big data Type de document : Article/Communication Auteurs : Xi Gong, Auteur ; Yujian Lu, Auteur ; Daniel Beene, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 21 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse socio-économique
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] enquête sociologique
[Termes IGN] Etats-Unis
[Termes IGN] fracturation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] régression géographiquement pondérée
[Termes IGN] TwitterRésumé : (auteur) People’s attitudes towards hydraulic fracturing (fracking) can be shaped by socio-demographics, economic development, social equity and politics, environmental impacts, and fracking-related information. Existing research typically conducts surveys and interviews to study public attitudes towards fracking among a small group of individuals in a specific geographic area, where limited samples may introduce bias. Here, we compiled geo-referenced social media big data from Twitter during 2018–2019 for the entire United States to present a more holistic picture of people’s attitudes towards fracking. We used a multiscale geographically weighted regression (MGWR) to investigate county-level relationships between the aforementioned factors and percentages of negative tweets concerning fracking. Results indicate spatial heterogeneity and varying scales of those associations. Counties with higher median household income, larger African American populations, and/or lower educational level are less likely to oppose fracking, and these associations show global stationarity in all contiguous US counties. Eastern and Central US counties with higher unemployment rates, counties east of the Great Plains with less fracking sites nearby, and Western and Gulf Coast region counties with higher health insurance enrolments are more likely to oppose fracking activities. These three variables show clear East-West geographical divides in influencing public perspective on fracking. In counties across the southern Great Plains, negative attitudes towards fracking are less often vocalized on Twitter as the share of Republican voters increases. These findings have implications for both predicting public perspectives and needed policy adjustments. The methodology can also be conveniently applied to investigate public perspectives on other controversial topics. Numéro de notice : A2023-160 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2022.2121856 Date de publication en ligne : 10/09/2022 En ligne : https://doi.org/10.1080/19475683.2022.2121856 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102862
in Annals of GIS > vol 29 n° 1 (January 2023) . - pp 21 - 35[article]Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid / Zhen Dai in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid Type de document : Article/Communication Auteurs : Zhen Dai, Auteur ; Sensen Wu, Auteur ; Yuanyuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2248 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] modèle de régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Geographically weighted regression (GWR) is a classical method of modeling spatially non-stationary relationships. The geographically neural network weighted regression (GNNWR) model solves the problem of the inaccurate construction of spatial weight kernels using a spatially weighted neural network. However, when the spatial distribution of observations is uneven, the spatial proximity expression in the input of GWR and GNNWR models does not fully represent the impact of the whole research space on the estimating point. Therefore, we established a global spatial proximity grid (GSPG) to express the spatial proximity of each estimating point and proposed a spatially weighted convolutional neural network (SWCNN) to extract the relationship between the GSPG and spatial weights. Finally, we proposed a geographically convolutional neural network weighted regression (GCNNWR) model combining SWCNN and ordinary linear regression (OLR) model to estimate spatial non-stationarity. We used two case studies of simulated data and real environment data to demonstrate the advancements of the GCNNWR model. The GCNNWR model achieved higher estimation accuracy and greater predictive power than the OLR, GWR, multi-scale GWR (MGWR), and GNNWR models. Moreover, the GCNNWR model maintained its better stability and accuracy in estimating spatially non-stationary relationships when the distribution of observations was uneven. Numéro de notice : A2022-773 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2100892 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2100892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101954
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2248 - 2269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions / Di Zhu in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions Type de document : Article/Communication Auteurs : Di Zhu, Auteur ; Yu Liu, Auteur ; Xin Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 645 - 676 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse multivariée
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] intelligence artificielle
[Termes IGN] régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphesMots-clés libres : Geospatial artificial intelligence (GeoAI) Résumé : (auteur) Geospatial artificial intelligence (GeoAI) has emerged as a subfield of GIScience that uses artificial intelligence approaches and machine learning techniques for geographic knowledge discovery. The non-regularity of data structures has recently led to different variants of graph neural networks in the field of computer science, with graph convolutional neural networks being one of the most prominent that operate on non-euclidean structured data where the numbers of nodes connections vary and the nodes are unordered. These networks use graph convolution – commonly known as filters or kernels – in place of general matrix multiplication in at least one of their layers. This paper suggests spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks where multivariate spatial data needs modeling and prediction. The feasibility of SRGCNNs lies in the feature propagation mechanisms, the spatial locality nature, and a semi-supervised training strategy. In the experiments, this paper demonstrates the operation of SRGCNNs with social media check-in data in Beijing and house price data in San Diego. The results indicate that a well-trained SRGCNN model is capable of learning from samples and performing reasonable predictions for unobserved locations. The paper also presents the effectiveness of incorporating the idea of geographically weighted regression for handling heterogeneity between locations in the model approach. Compared to conventional spatial regression approaches, SRGCNN-based models tend to generate much more accurate and stable results, especially when the sampling ratio is low. This study offers to bridge the methodological gap between graph deep learning and spatial regression analytics. The proposed idea serves as an example to illustrate how spatial analytics can be combined with state-of-the-art deep learning models, and to enlighten future research at the front of GeoAI. Numéro de notice : A2022-865 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00454-x Date de publication en ligne : 02/11/2021 En ligne : https://doi.org/10.1007/s10707-021-00454-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102158
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 645 - 676[article]The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
[article]
Titre : The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas Type de document : Article/Communication Auteurs : Jun Li, Auteur ; Tianyu Guo, Auteur ; Chengye Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 665 - 671 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas, six types of data were used as driving factors and three methods —multi-linear regression (MLR), geographically weighted regression (GWR), and geographically weighted artificial neural network (GWANN)— were adopted in the modeling. The experiments, conducted in Shengli mining areas located in Xilinhot city, China, show that the MLR model without consideration of spatial heterogeneity and spatial non-stationarity performs the worst and that the GWR model presents obvious location differences, since it predefines a linear relationship which is unable to describe FVC for some locations. The GWANN model, improving on these defects, is the most suitable model for the FVC driving process in mining areas; it outperforms the other two models, with root-mean-square error (RMSE) and mean absolute percentage error (MAPE) reaching 0.16 and 0.20. It has improvements of approximately 24% in RMSE and 33% in MAPE compared to the MLR model, and those values grow to 59% and 71% when compared with the GWR model. Numéro de notice : A2022-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00070R3 Date de publication en ligne : 01/10/2022 En ligne : https://doi.org/10.14358/PERS.21-00070R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101973
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 10 (October 2022) . - pp 665 - 671[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022101 SL Revue Centre de documentation Revues en salle Disponible Use of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand / Kiatkulchai Jitt-Aer in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkMixed geographically and temporally weighted regression for spatio-temporal deformation modelling / Zhijia Yang in Survey review, vol 54 n° 385 (July 2022)PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkA cost-effective algorithm for calibrating multiscale geographically weighted regression models / Bo Wu in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)PermalinkUnmixing-based spatiotemporal image fusion accounting for complex land cover changes / Xiaolu Jiang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)PermalinkA geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkCombining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China / Huijuan Zhang in Computers & geosciences, vol 158 (January 2022)PermalinkModelling spatial processes in quantitative human geography / A. Stewart Fotheringham in Annals of GIS, vol 28 n° 1 (January 2022)PermalinkSpatial distribution of lead (Pb) in soil: a case study in a contaminated area of the Czech Republic / Nicolas Francos in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkIdentifying surface urban heat island drivers and their spatial heterogeneity in China’s 281 cities: An empirical study based on multiscale geographically weighted regression / Lu Niu in Remote sensing, vol 13 n° 21 (November-1 2021)Permalink