Descripteur
Documents disponibles dans cette catégorie (45)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Méthodes et outils pour l’analyse spatiale exploratoire en géolinguistique : contributions aux humanités numériques spatialisées / Clément Chagnaud (2021)
Titre : Méthodes et outils pour l’analyse spatiale exploratoire en géolinguistique : contributions aux humanités numériques spatialisées Type de document : Thèse/HDR Auteurs : Clément Chagnaud, Auteur ; Paule-Annick Davoine, Directeur de thèse ; Elisabetta Carpitelli, Directeur de thèse Editeur : Grenoble [France] : Université Grenoble Alpes Année de publication : 2021 Importance : 316 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Grenoble Alpes, Spécialité Ingénierie de la Cognition, de l’Interaction, de l’Apprentissage et de la CréationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cartographie thématique
[Termes IGN] classification barycentrique
[Termes IGN] dialecte
[Termes IGN] exploration de données géographiques
[Termes IGN] interpolation spatiale
[Termes IGN] interprétation automatique
[Termes IGN] linguistique
[Termes IGN] région
[Termes IGN] structure spatialeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Depuis près d’un siècle, les géolinguistes utilisent la cartographie pour visualiser les données dialectales et ainsi comprendre les structures spatiales des dialectes. Les données produites par les géolinguistes sont issues d’enquêtes réalisées auprès de locuteurs identifiés sur un nombre restreint de localités. Elles sont donc ponctuelles, textuelles et spatialisées.Aujourd'hui, l'outillage logiciel destinée au traitement cartographique des données géolinguistiques est très en retard et les systèmes d'information géographique (SIG) sont peu adaptés. Nous proposons donc des méthodes et des outils géomatiques permettant la production automatique de cartes interprétatives et de cartes de synthèse pour l'analyse spatiale exploratoire de données géolinguistiques.Nos méthodes sont implémentées dans deux outils cartographiques, ShinyDialect et ShinyClass, qui permettent la visualisation et l'exploration des résultats.À travers ces méthodes, nos problématiques visent à intégrer des éléments géographiques (topographiques, historiques, culturels, administratifs etc.) dans le traitement des données géolinguistiques. L’objectif est d’explorer les liens potentiels entre ces éléments de contexte et la diffusion des dialectes sur un territoire.Ces travaux se situent dans le contexte du projet ECLATS dont l'objectif est de valoriser les données de l’Atlas Linguistique de la France. Nos propositions s'inscrivent dans une volonté de transfert de connaissances issues de l'informatique, de l'analyse spatiale et de la géographie vers la géolinguistique. Ces recherches se placent donc dans le paradigme des humanités numériques spatialisées et présentent des enjeux transdisciplinaires. Note de contenu : Introduction générale
1- Méthodes et pratiques cartographiques en géolinguistique
2- Contributions méthodologiques et outillage logiciel
Conclusion généraleNuméro de notice : 28677 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Ingénierie de la Cognition, de l’Interaction, de l’Apprentissage et de la Création : Grenoble : 2021 Organisme de stage : Laboratoire d'Informatique de Grenoble DOI : sans En ligne : https://hal.science/tel-03350462 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99971 Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles / Re-Yang Lee in Geocarto international, vol 35 n° 12 ([01/09/2020])
[article]
Titre : Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles Type de document : Article/Communication Auteurs : Re-Yang Lee, Auteur ; Kuo-Chen Chang, Auteur ; Deng-Yuan Ou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1293 - 1310 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image captée par drone
[Termes IGN] interprétation automatique
[Termes IGN] pente
[Termes IGN] TaïwanRésumé : (auteur) Conducting field research in Taiwan can be challenging because of the abundance of steep slopes. This study aimed to establish an automatic interpretation procedure applicable to exploring images of large-scale slope land taken using UAVs. The proposed method was compared with traditional field surveying and manual image interpretation techniques to determine the advantages and disadvantages of the proposed procedure in terms of efficiency. The object-based image analysis (OBIA) and texture features were first combined and the random forest (RF) classifier was then employed to interpret crop types. This study selected three sites of slope land and plains for experimentation. The obtained results indicated that the overall accuracy of the proposed classification method exceeded 91%, and the Kappa value was approximately 0.9 for all sites. In addition, interpretation of the proposed method was more efficient than that of the two traditional methods. Numéro de notice : A2020-479 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1559886 Date de publication en ligne : 04/06/2019 En ligne : https://doi.org/10.1080/10106049.2018.1559886 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95628
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1293 - 1310[article]Unsupervised semantic and instance segmentation of forest point clouds / Di Wang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
[article]
Titre : Unsupervised semantic and instance segmentation of forest point clouds Type de document : Article/Communication Auteurs : Di Wang, Auteur Année de publication : 2020 Article en page(s) : pp 86 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] classification non dirigée
[Termes IGN] données lidar
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] indice foliaire
[Termes IGN] interprétation automatique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémètre laser terrestreRésumé : (auteur) Terrestrial Laser Scanning (TLS) has been increasingly used in forestry applications including forest inventory and plant ecology. Tree biophysical properties such as leaf area distributions and wood volumes can be accurately estimated from TLS point clouds. In these applications, a prerequisite is to properly understand the information content of large scale point clouds (i.e., semantic labelling of point clouds), so that tree-scale attributes can be retrieved. Currently, this requirement is undergoing laborious and time consuming manual works. In this work, we jointly address the problems of semantic and instance segmentation of forest point clouds. Specifically, we propose an unsupervised pipeline based on a structure called superpoint graph, to simultaneously perform two tasks: single tree isolation and leaf-wood classification. The proposed method is free from restricted assumptions of forest types. Validation using simulated data resulted in a mean Intersection over Union (mIoU) of 0.81 for single tree isolation, and an overall accuracy of 87.7% for leaf-wood classification. The single tree isolation led to a relative root mean square error (RMSE%) of 2.9% and 19.8% for tree height and crown diameter estimations, respectively. Comparisons with existing methods on other benchmark datasets showed state-of-the-art results of our method on both single tree isolation and leaf-wood classification tasks. We provide the entire framework as an open-source tool with an end-user interface. This study closes the gap for using TLS point clouds to quantify tree-scale properties in large areas, where automatic interpretation of the information content of TLS point clouds remains a crucial challenge. Numéro de notice : A2020-347 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.020 Date de publication en ligne : 28/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95228
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 86 - 97[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Segmentation d'image par intégration itérative de connaissances / Mahaman Sani Chaibou Salaou (2019)
Titre : Segmentation d'image par intégration itérative de connaissances Type de document : Thèse/HDR Auteurs : Mahaman Sani Chaibou Salaou, Auteur ; Basel Solaiman, Directeur de thèse ; Mohamed Ali Mahjoub, Directeur de thèse Editeur : Institut Mines-Télécom Atlantique IMT Atlantique Année de publication : 2019 Autre Editeur : Université Bretagne Loire Importance : 148 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Ecole Nationale Supérieure Mines-Telecom Atlantique Bretagne Pays de la Loire, Spécialité : Signal, Image et VisionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification basée sur les régions
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] description multiniveau
[Termes IGN] détection de régions
[Termes IGN] fusion de données
[Termes IGN] interprétation automatique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] zone d'intérêtIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le traitement d’images est un axe de recherche très actif depuis des années. L’interprétation des images constitue une de ses branches les plus importantes de par ses applications socio-économiques et scientifiques. Cependant cette interprétation, comme la plupart des processus de traitements d’images, nécessite une phase de segmentation pour délimiter les régions à analyser. En fait l’interprétation est un traitement qui permet de donner un sens aux régions détectées par la phase de segmentation. Ainsi, la phase d’interprétation ne pourra analyser que les régions détectées lors de la segmentation. Bien que l’objectif de l’interprétation automatique soit d’avoir le même résultat qu’une interprétation humaine, la logique des techniques classiques de ce domaine ne marie pas celle de l’interprétation humaine. La majorité des approches classiques d’interprétation d’images séparent la phase de segmentation et celle de l’interprétation. Les images sont d’abord segmentées puis les régions détectées sont interprétées. En plus, au niveau de la segmentation les techniques classiques parcourent les images de manière séquentielle, dans l’ordre de stockage des pixels. Ce parcours ne reflète pas nécessairement le parcours de l’expert humain lors de son exploration de l’image. En effet ce dernier commence le plus souvent par balayer l’image à la recherche d’éventuelles zones d’intérêts. Dans le cas échéant, il analyse les zones potentielles sous trois niveaux de vue pour essayer de reconnaitre de quel objet s’agit-il. Premièrement, il analyse la zone en se basant sur ses caractéristiques physiques. Ensuite il considère les zones avoisinantes de celle-ci et enfin il zoome sur toute l’image afin d’avoir une vue complète tout en considérant les informations locales à la zone et celles de ses voisines. Pendant son exploration, l’expert, en plus des informations directement obtenues sur les caractéristiques physiques de l’image, fait appel à plusieurs sources d’informations qu’il fusionne pour interpréter l’image. Ces sources peuvent inclure les connaissent acquises grâce à son expérience professionnelle, les contraintes existantes entre les objets de ce type d’images, etc. L’idée de l’approche présentée ici est que simuler l’activité visuelle de l’expert permettrait une meilleure compatibilité entre les résultats de l’interprétation et ceux de l’expert. Ainsi nous retenons de cette analyse trois aspects importants du processus d’interprétation d’image que nous allons modéliser dans l’approche proposée dans ce travail : 1. Le processus de segmentation n’est pas nécessairement séquentiel comme la plus part des techniques de segmentations qu’on rencontre, mais plutôt une suite de décisions pouvant remettre en cause leurs prédécesseurs. L’essentiel étant à la fin d’avoir la meilleure classification des régions. L’interprétation ne doit pas être limitée par la segmentation. 2. Le processus de caractérisation d’une zone d’intérêt n’est pas strictement monotone i.e. que l’expert peut aller d’une vue centrée sur la zone à vue plus large incluant ses voisines pour ensuite retourner vers la vue contenant uniquement la zone et vice-versa. 3. Lors de la décision plusieurs sources d’informations sont sollicitées et fusionnées pour une meilleure certitude. La modélisation proposée de ces trois niveaux met particulièrement l’accent sur les connaissances utilisées et le raisonnement qui mène à la segmentation des images. Note de contenu : Introduction générale
1- Segmentation pour l’interprétation de scène
2- Segmentation par propagation des connaissances
3- Croissance des régions adaptative
4- Similarité des superpixels par apprentissage
ConclusionsNuméro de notice : 25840 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image et Vision : Ecole Nationale Supérieure Mines-Telecom Atlantique : 2019 nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02310224 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95181 A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds / Loïc Landrieu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds Type de document : Article/Communication Auteurs : Loïc Landrieu , Auteur ; Hugo Raguet, Auteur ; Bruno Vallet , Auteur ; Clément Mallet , Auteur ; Martin Weinmann, Auteur Année de publication : 2017 Projets : 1-Pas de projet / Article en page(s) : pp 102 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] données localisées 3D
[Termes IGN] interprétation automatique
[Termes IGN] lissage de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régularisation d'image
[Termes IGN] scène
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we introduce a mathematical framework for obtaining spatially smooth semantic labelings of 3D point clouds from a pointwise classification. We argue that structured regularization offers a more versatile alternative to the standard graphical model approach. Indeed, our framework allows us to choose between a wide range of fidelity functions and regularizers, influencing the properties of the solution. In particular, we investigate the conditions under which the smoothed labeling remains probabilistic in nature, allowing us to measure the uncertainty associated with each label. Finally, we present efficient algorithms to solve the corresponding optimization problems.
To demonstrate the performance of our approach, we present classification results derived for standard benchmark datasets. We demonstrate that the structured regularization framework offers higher accuracy at a lighter computational cost in comparison to the classic graphical model approach.Numéro de notice : A2017-641 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.010 Date de publication en ligne : 11/09/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86998
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 102 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Documents numériques
en open access
A structured regularization framework ... - preprintAdobe Acrobat PDF Geometric features and their relevance for 3D point cloud classification / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-1/W1 (May 2017)PermalinkProcess BIM : Un chantier-école pour 150 professionnels / John Dutertre in Géomètre, n° 2146 (avril 2017)PermalinkNovel shape indices for vector landscape pattern analysis / C. Zhang in International journal of geographical information science IJGIS, vol 30 n° 11-12 (November - December 2016)PermalinkMapping of land cover in northern California with simulated hyperspectral satellite imagery / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)Permalink3D building reconstruction from ALS data using unambiguous decomposition into elementary structures / Malgorzata Jarząbek-Rychard in ISPRS Journal of photogrammetry and remote sensing, vol 118 (August 2016)PermalinkUse of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence / Luca Pulvirenti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)PermalinkEffiziente Interpretation von 3D-Punktwolken durch die Abschätzung der Relevanz von Merkmalen / Martin Weinmann in AVN Allgemeine Vermessungs-Nachrichten, vol 2015 n° 10 (Oktober 2015)PermalinkAdvances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective / Damien Arvor in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)PermalinkAutomatic interpretation of digital maps / Volker Walter in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 4 (July - August 2011)PermalinkInterpretation and generalization of 3D landscape from lidar data / S. Filin in Cartography and Geographic Information Science, vol 34 n° 3 (July 2007)Permalink