Descripteur
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Invariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Invariant structure representation for remote sensing object detection based on graph modeling Type de document : Article/Communication Auteurs : Zicong Zhu, Auteur ; Xian Sun, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5625217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] granularité d'image
[Termes IGN] graphe
[Termes IGN] invariantRésumé : (auteur) Due to the characteristics of vertical orthophoto imaging, the apparent structural features of the object in the remote sensing (RS) image are relatively stable, such as the cross-shaped structure of the aircraft and the rectangular structure of the vehicle. Compared with the traditional visual features, using these features is conducive to improving the accuracy of object detection. However, there are few studies on such characteristics. In this article, we systematically study the invariant structural features of remote sensing objects and propose a graph focusing aggregation network (GFA-Net) to represent the structural features of remote sensing objects. Among them, in view of the problem that traditional convolutional neural networks (CNNs) are sensitive to the changes in rotation, scale, and other factors, which makes it difficult to extract structural features, we propose the graph focusing process (GFP) based on the idea of graph convolution. Analysis and experiments show that graph structure has significant advantages over Euclidean feature space under CNN in expressing such structural features. In order to realize the end-to-end efficient training of the above model, we design a graph aggregation network (GAN) to update the weight of nodes. We verify the effectiveness of our method on the proposed multitask datasets aircraft component segmentation dataset (ACSD) and the large-scale Fine-grAined object recognItion in high-Resolution RS imagery (FAIR1M). Experiments conducted on the object detection datasets of large-scale Dataset for Object deTection in Aerial images (DOTA) and HRSC2016 prove that the proposed method is superior to the current state-of-the-art (SOTA) method. Numéro de notice : A2022-560 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3181686 Date de publication en ligne : 09/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3181686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101186
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5625217[article]Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss Type de document : Article/Communication Auteurs : Ruoqiao Jiang, Auteur ; Shaohui Mei, Auteur ; Mingyang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3326 - 3337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] invariant
[Termes IGN] réseau neuronal siamois
[Termes IGN] rotationRésumé : (auteur) Rotation-invariant features are of great importance for object detection and image classification in very-high-resolution (VHR) optical remote sensing images. Though multibranch convolutional neural network (mCNN) has been demonstrated to be very effective for rotation-invariant feature learning, how to effectively train such a network is still an open problem. In this article, a nested Siamese structure (NSS) is proposed for training the mCNN to learn effective rotation-invariant features, which consists of an inner Siamese structure to enhance intraclass cohesion and an outer Siamese structure to enlarge interclass margin. Moreover, a double center loss (DCL) function, in which training samples from the same class are mapped closer to each other while those from different classes are mapped far away to each other, is proposed to train the proposed NSS even with a small amount of training samples. Experimental results over three benchmark data sets demonstrate that the proposed NSS trained by DCL is very effective to encounter rotation varieties when learning features for image classification and outperforms several state-of-the-art rotation-invariant feature learning algorithms even when a small amount of training samples are available. Numéro de notice : A2021-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3021283 Date de publication en ligne : 18/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3021283 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97395
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3326 - 3337[article]Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery Type de document : Article/Communication Auteurs : Christian Geiss, Auteur ; Patrick Aravena Pelizari, Auteur ; Lukas Blickensdörfer, Auteur ; Hannes Taubenböck, Auteur Année de publication : 2019 Article en page(s) : pp 42 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Cologne
[Termes IGN] échantillon
[Termes IGN] échantillonnage
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] invariant
[Termes IGN] Kenya
[Termes IGN] séparateur à vaste margeRésumé : (Auteur) We follow the idea of learning invariant decision functions for remote sensing image classification with Support Vector Machines (SVM). To do so, we generate artificially transformed samples (i.e., virtual samples) from available prior knowledge. Labeled samples closest to the separating hyperplane with maximum margin (i.e., the Support Vectors) are identified by learning an initial SVM model. The Support Vectors are used for generating virtual samples by perturbing the features to which the model should be invariant. Subsequently, the model is relearned using the Support Vectors and the virtual samples to eventually alter the hyperplane with maximum margin and enhance generalization capabilities of decision functions. In contrast to existing approaches, we establish a self-learning procedure to ultimately prune non-informative virtual samples from a possibly arbitrary invariance generation process to allow for robust and sparse model solutions. The self-learning strategy jointly considers a similarity and margin sampling constraint. In addition, we innovatively explore the invariance generation process in the context of an object-based image analysis framework. Image elements (i.e., pixels) are aggregated to image objects (as represented by segments/superpixels) with a segmentation algorithm. From an initial singular segmentation level, invariances are encoded by varying hyperparameters of the segmentation algorithm in terms of scale and shape. Experimental results are obtained from two very high spatial resolution multispectral data sets acquired over the city of Cologne, Germany, and the Hagadera Refugee Camp, Kenya. Comparative model accuracy evaluations underline the favorable performance properties of the proposed methods especially in settings with very few labeled samples. Numéro de notice : A2019-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.001 Date de publication en ligne : 12/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92666
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 42 - 58[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt On constrained integrated total Kalman filter for integrated direct geo-referencing / Vahid Mahboub in Survey review, vol 51 n° 364 (January 2019)
[article]
Titre : On constrained integrated total Kalman filter for integrated direct geo-referencing Type de document : Article/Communication Auteurs : Vahid Mahboub, Auteur ; Mohammad Saadatseresht, Auteur ; Alireza A. Ardalan, Auteur Année de publication : 2019 Article en page(s) : pp 26 - 34 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Kalman
[Termes IGN] géoréférencement direct
[Termes IGN] GPS-INS
[Termes IGN] invariant
[Termes IGN] matrice de covariance
[Termes IGN] modèle dynamiqueRésumé : (Auteur) A constrained integrated total Kalman filter algorithm is developed. It considers a quadratic constraint which may appear in some problems of integrated direct geo-referencing in particular when INS data is used as system equations of a Kalman filter algorithm. In such a case one encounters with a dynamic errors-in-variables (DEIV) model for system equations, although DEIV model has been already considered for equations of the Kalman filter algorithm and a solution namely integrated total Kalman filter (ITKF) has been given to it. Also this algorithm can be simplified to unconstraint case which is useful for some problems. It considers DEIV model for both observation equations and system equations of the Kalman filter algorithm. The predicted residuals for all variables including the random noise at the first epoch, the observational noise, the random system noise and the corresponding noise of two coefficient matrixes (in the system equations and the observation equations) besides the variance matrix of the unknown parameters are obtained. In two numerical examples, integrated direct geo-referencing problem is solved for a GPS-INS system. Numéro de notice : A2019-186 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2017.1341736 Date de publication en ligne : 30/06/2017 En ligne : https://doi.org/10.1080/00396265.2017.1341736 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92617
in Survey review > vol 51 n° 364 (January 2019) . - pp 26 - 34[article]Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate / Etienne Bernard in Journal of functional analysis, vol 272 n° 8 (15 April 2017)
[article]
Titre : Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate Type de document : Article/Communication Auteurs : Etienne Bernard , Auteur ; Pierre Gabriel, Auteur Année de publication : 2017 Projets : KIBORD / Article en page(s) : pp 3455 - 3485 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse numérique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] équation intégrale
[Termes IGN] invariantRésumé : (Auteur) We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the largest one in which we can expect convergence to the steady size distribution. Although this convergence is known to occur under fairly general conditions on the coefficients of the equation, we prove that it does not happen uniformly with respect to the initial data when the fragmentation rate in bounded. First we get the result for fragmentation kernels which do not form arbitrarily small fragments by taking advantage of the Dyson–Phillips series. Then we extend it to general kernels by using the notion of quasi-compactness and the fact that it is a topological invariant. Numéro de notice : A2017-779 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jfa.2017.01.009 Date de publication en ligne : 31/01/2017 En ligne : https://doi.org/10.1016/j.jfa.2017.01.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88986
in Journal of functional analysis > vol 272 n° 8 (15 April 2017) . - pp 3455 - 3485[article]Unsupervised feature learning for land-use scene recognition / Jiayuan Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)PermalinkRotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests / Yongtao Yu in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)PermalinkConception d'algorithmes / Patrick Bosc (2016)PermalinkDistinctive order based self-similarity descriptor for multi-sensor remote sensing image matching / Amin Sedaghat in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)PermalinkInvariant spatial information in sketch maps — a study of survey sketch maps of urban areas / Jia Wang in Journal of Spatial Information Science, JoSIS, n° 11 (September 2015)PermalinkInvariant rules for multipolarization SAR change detection / Vincenzo Carotenuto in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)PermalinkThe signature of self-organisation in cities: Temporal patterns of clustering and growth in street networks / Kinda Al-Sayed in Revue internationale de géomatique, vol 23 n° 3 - 4 (septembre 2013 - février 2014)PermalinkA concept for feature based data registration by simultaneous consideration of laser scanner data and photogrammetric images / A. Wendt in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 2 (June 2007)PermalinkIndirect approach to invariant point determination for SLR and VLBI systems: an assessment / John Dawson in Journal of geodesy, vol 81 n° 6-8 (June - August 2007)PermalinkMulti-level topological relations between spatial regions based upon topological invariants / Min Deng in Geoinformatica, vol 11 n° 2 (June - August 2007)Permalink