Descripteur
Documents disponibles dans cette catégorie (91)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? / Christophe Plotard in XYZ, n° 174 (mars 2023)
[article]
Titre : Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? Type de document : Article/Communication Auteurs : Christophe Plotard, Auteur ; Philippe Deverchère, Auteur ; Sarah Potin, Auteur ; Sébastien Vauclair, Auteur Année de publication : 2023 Article en page(s) : pp 33 - 38 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] données de terrain
[Termes IGN] échelle d'intensité
[Termes IGN] flux lumineux
[Termes IGN] image à basse résolution
[Termes IGN] image à très haute résolution
[Termes IGN] image NPP-VIIRS
[Termes IGN] image satellite
[Termes IGN] impact sur l'environnement
[Termes IGN] intensité lumineuse
[Termes IGN] inventaire
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] photomètre
[Termes IGN] pollution lumineuse
[Termes IGN] prise de vue nocturne
[Termes IGN] radianceRésumé : (Auteur) Le développement de l’éclairage artificiel nocturne est à l’origine d’une pollution lumineuse aux effets néfastes pour la biodiversité, la santé humaine, la consommation énergétique et l’observation astronomique. Pour analyser les différentes formes de cette pollution, le bureau d’études DarkSkyLab s’appuie sur plusieurs types de données tels que des mesures depuis le sol, des images satellitaires et aériennes, ou des inventaires de points d’éclairage. Cet article en présente les principaux aspects, de même que divers outils, méthodes et indicateurs conçus pour permettre leur traitement, leur modélisation et leur représentation cartographique. Numéro de notice : A2023-069 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102863
in XYZ > n° 174 (mars 2023) . - pp 33 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 RAB Revue Centre de documentation En réserve L003 Disponible Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Volunteered geographic information mobile application for participatory landslide inventory mapping / Raden Muhammad Anshori in Computers & geosciences, vol 161 (April 2022)
[article]
Titre : Volunteered geographic information mobile application for participatory landslide inventory mapping Type de document : Article/Communication Auteurs : Raden Muhammad Anshori, Auteur ; Guruh Samodra, Auteur ; Djati Mardiatno, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105073 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] base de données
[Termes IGN] cartographie thématique
[Termes IGN] données localisées des bénévoles
[Termes IGN] effondrement de terrain
[Termes IGN] géopositionnement
[Termes IGN] inventaire
[Termes IGN] Java (île de)
[Termes IGN] téléphonie mobileRésumé : (auteur) Participatory landslide inventory mapping using the Volunteered Geographic Information (VGI) mobile app is a promising method to produce a landslide inventory map. The aim of this research is to describe the development and implementation of the VGI mobile app for participatory landslide inventory mapping. The architecture VGI mobile app is developed on the basis of Free Open-source Software for Geospatial Application server-client software to ensure reproducibility and flexibility, and to reduce cost. Anyone can reproduce, modify, and share the code, which suggests improvement in the collective ability to use, prepare, and landslide inventory update. Landslide inventory using VGI mobile app shows that the tool and method successfully map landslides in the landslide prone area (Magelang Regency, Central Java Province, Indonesia) with fairly high levels of effectiveness and convenience. Magelang Regency, one of the landslide prone areas in Java, is located in the intermountain basin surrounded by Menoreh Mountain, Merapi, Merbabu, Suropati-Telomoyo Complex, and Sumbing Volcano. In this study, landslide inventory mapping using VGI mobile app was applied in Magelang Regency by 17 volunteers from BPBD (Regional Agency for Disaster Management) Magelang Regency for three days. Landslides area occurred from 2017 to 2019 were properly identified and mapped by the volunteers. The sizes of landslides varied from 5.2 m2 to 4,632.5 m2, and the average was 208.2 m2. A team of volunteer was able to map 7-10 landslides per day. Participatory mapping using VGI mobile app reduces the time in transferring field data to a GIS database, in contrast to conventional participatory landslide inventory mapping. VGI mobile app allows users to provide new geographical landslide data, share landslide data rapidly, ensure consistency of landslide data, and improve accessibility of landslide data. The use of the VGI mobile app for participatory landslide inventory mapping provides new opportunities to improve risk assessment, preparedness, and early action and warning to landslide hazard. Numéro de notice : A2022-189 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.cageo.2022.105073 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105073 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99918
in Computers & geosciences > vol 161 (April 2022) . - n° 105073[article]La cartographie au service de la diffusion des connaissances de l’Inventaire du Patrimoine culturel de la Région Bretagne / Elise Frank (2022)
Titre : La cartographie au service de la diffusion des connaissances de l’Inventaire du Patrimoine culturel de la Région Bretagne Type de document : Mémoire Auteurs : Elise Frank, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 67 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle Ingénieur 3e année, cycle CarthagéoLangues : Français (fre) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] analyse des besoins
[Termes IGN] Bretagne
[Termes IGN] carte interactive
[Termes IGN] cartographie thématique
[Termes IGN] inventaire
[Termes IGN] patrimoine culturel
[Termes IGN] production cartographique
[Termes IGN] rivièreIndex. décimale : DCAR Mémoires de l'ex DESS cartographie et du Master CARTHAGEO Résumé : (auteur) Ce rapport présente le stage de vingt-deux semaines effectué au Service de l’Inventaire du Patrimoine culturel de la Région Bretagne, supervisé par Janik MICHON, responsable du pôle Etudes et expertises - Production et valorisation des données (PEPS). Le stage a été effectué sur site à Rennes. Ce stage a porté sur l’utilisation de la cartographie en tant que moyen de diffusion des connaissances du service de l’Inventaire du patrimoine culturel de Bretagne, que ce soit au format papier ou bien numérique. Le stage s’est concentré sur deux axes. Le premier porte sur l’éditorialisation de différentes cartes rattachées à des projets spécifiques au sein de l’Inventaire. Le second concerne la réflexion et l’expérimentation de cartes réalisées avec l’outil en ligne uMap ainsi que l’exploration des possibilités de développement de Story Map, une application permettant de réaliser des cartes narratives. Note de contenu :
1- Introduction : contexte et objectifs
2- La cartographie au service de l’Inventaire
3- Des outils interactifs mettant en valeur les données de l’Inventaire
4- Aboutissements des différentes missions
5- Discussion et conclusionNuméro de notice : 24036 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Service de l’Inventaire du Patrimoine culturel, Région Bretagne Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101854 Documents numériques
en open access
La cartographie au service... - pdf auteur -Adobe Acrobat PDF Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the indian Himalayan region: Recent developments, gaps, and future directions / Amit Batar in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
[article]
Titre : Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the indian Himalayan region: Recent developments, gaps, and future directions Type de document : Article/Communication Auteurs : Amit Batar, Auteur ; Teiji Watanabe, Auteur Année de publication : 2021 Article en page(s) : n° 114 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de sensibilité
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] Google Earth
[Termes IGN] Himalaya
[Termes IGN] Inde
[Termes IGN] inventaire
[Termes IGN] système d'information géographique
[Termes IGN] théorème de BayesRésumé : (auteur) The Himalayan region and hilly areas face severe challenges due to landslide occurrences during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception. However, the landslide related database and research are still inadequate in these landslide-prone areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide susceptibility map using weights of evidence (WoE) method in the Geographical Information System (GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent developments, gaps, and future directions related to landslide inventory, susceptibility mapping, and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013. Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the previous study. Then, the WoE method was applied to assign the weights for each class of causative factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map was divided into five susceptibility classes (very high, high, medium, low, and very low classes). Later, the validation of the landslide susceptibility map was checked against randomly selected landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and barren land. The results show that medium to very high landslide susceptibilities areas are in the upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07). The results also show that landslide susceptibility is high in high relative relief areas and shallow soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this landslide susceptibility map could help the local governments in landslide hazard mitigation, land use planning, and landscape protection. Numéro de notice : A2021-233 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030114 Date de publication en ligne : 27/02/2021 En ligne : https://doi.org/10.3390/ijgi10030114 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97228
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 114[article]PermalinkPermalinkApplication of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy / Vasil Yordanov in Applied geomatics, vol 12 n° 4 (December 2020)PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])PermalinkDetecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)PermalinkGeocoding of trees from street addresses and street-level images / Daniel Laumer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)PermalinkRestitution 4D du Château du Kagenfels par combinaison de l’existant et d’hypothèses archéologiques pour une visite virtuelle du site / Théo Benazzi (2018)PermalinkComparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models / Kai Cui in Geocarto international, vol 32 n° 9 (September 2017)PermalinkDeux systèmes d’évaluation du statut de conservation des espèces en France : complémentarité ou redondance ? Cas de la liste rouge et du rapport sur l’état de conservation pour la directive habitats-faune-flore / Renaud Puissauve in Revue d'écologie, vol 71 n° 4 (octobre - décembre 2016)PermalinkPredicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables / Aaron E. Maxwell in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 6 (June 2016)Permalink