Journal of geodesy . vol 90 n° 3Paru le : 01/03/2016 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDetermination of differential code biases with multi-GNSS observations / Ningbo Wang in Journal of geodesy, vol 90 n° 3 (March 2016)
[article]
Titre : Determination of differential code biases with multi-GNSS observations Type de document : Article/Communication Auteurs : Ningbo Wang, Auteur ; Yunbin Yuan, Auteur ; Zishen Li, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 209 - 228 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] code GNSS
[Termes IGN] erreur systématique
[Termes IGN] estimation de précision
[Termes IGN] retard ionosphèrique
[Termes IGN] teneur totale en électrons
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) In order to better understand the differential code biases (DCBs) of global navigation satellite system, the IGGDCB method is extended to estimate the intra- and inter-frequency biases of the global positioning system (GPS), GLONASS, BeiDou navigation satellite system (BDS), and Galileo based on observations collected by the multi-GNSS experiment (MGEX) of the international GNSS service (IGS). In the approach of IGGDCB, the local ionospheric total electronic content is modeled with generalized triangular series (GTS) function rather than using a global ionosphere model or a priori ionospheric information. The DCB estimated by the IGGDCB method is compared with the DCB products from the Center for Orbit Determination in Europe (CODE) and German Aerospace Center (DLR), as well as the broadcast timing group delay (TGD) parameters over a 2-year span (2013 and 2014). The results indicate that GPS and GLONASS intra-frequency biases obtained in this work show the same precision levels as those estimated by DLR (about 0.1 and 0.2–0.4 ns for the two constellations, respectively, with respect to the products of CODE). The precision levels of IGGDCB-based inter-frequency biases estimated over the 24-month period are about 0.29 ns for GPS, 0.56 ns for GLONASS, 0.36 ns for BDS, and 0.24 ns for Galileo, respectively. Here, the accuracies of GPS and GLONASS biases are assessed relative to the products of CODE, while those of BDS and Galileo are compared with the estimates of DLR. In addition, the monthly stability indices of IGGDCB-based DCBs are 0.11 (GPS), 0.18 (GLONASS), 0.17 (BDS), and 0.14 (Galileo) ns for the individual constellation. Numéro de notice : A2016-246 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0867-4 Date de publication en ligne : 11/11/2015 En ligne : https://doi.org/10.1007/s00190-015-0867-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80752
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 209 - 228[article]Precise orbit determination based on raw GPS measurements / Norbert Zehentner in Journal of geodesy, vol 90 n° 3 (March 2016)
[article]
Titre : Precise orbit determination based on raw GPS measurements Type de document : Article/Communication Auteurs : Norbert Zehentner, Auteur ; Torsten Mayer-Gürr, Auteur Année de publication : 2016 Article en page(s) : pp 275 - 286 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GPS
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] poursuite de satelliteRésumé : (auteur) Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step. Numéro de notice : A2016-247 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0872-7 En ligne : http://dx.doi.org/10.1007/s00190-015-0872-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80754
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 275 - 286[article]Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis / Adria Rovira-Garcia in Journal of geodesy, vol 90 n° 3 (March 2016)
[article]
Titre : Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis Type de document : Article/Communication Auteurs : Adria Rovira-Garcia, Auteur ; José Miguel Juan, Auteur ; Jaume Sanz, Auteur ; Guillermo Gonzalez-Casado, Auteur ; D. Ibáñez, Auteur Année de publication : 2016 Article en page(s) : pp 229 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] caractérisation
[Termes IGN] données GNSS
[Termes IGN] modèle ionosphérique
[Termes IGN] phase GNSSRésumé : (auteur) The characterization of the accuracy of ionospheric models currently used in global navigation satellite systems (GNSSs) is a long-standing issue. The characterization remains a challenging problem owing to the lack of sufficiently accurate slant ionospheric determinations to be used as a reference. The present study proposes a methodology based on the comparison of the predictions of any ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences are separated as hardware delays (a receiver constant plus a satellite constant) per day. The present study was conducted for the entire year of 2014, i.e. during the last solar cycle maximum. The ionospheric models assessed are the operational models broadcast by the global positioning system (GPS) and Galileo constellations, the satellite-based augmentation system (SBAS) (i.e. European Geostationary Navigation Overlay System (EGNOS) and wide area augmentation system (WAAS)), a number of post-process global ionospheric maps (GIMs) from different International GNSS Service (IGS) analysis centres (ACs) and, finally, a more sophisticated GIM computed by the research group of Astronomy and GEomatics (gAGE). Ionospheric models based on GNSS data and represented on a grid (IGS GIMs or SBAS) correct about 85 % of the total slant ionospheric delay, whereas the models broadcasted in the navigation messages of GPS and Galileo only account for about 70 %. Our gAGE GIM is shown to correct 95 % of the delay. The proposed methodology appears to be a useful tool to improve current ionospheric models. Numéro de notice : A2016-248 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0868-3 Date de publication en ligne : 29/10/2015 En ligne : https://doi.org/10.1007/s00190-015-0868-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80755
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 229 - 240[article]