Descripteur
Documents disponibles dans cette catégorie (34)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Accuracy of vacant housing detection models: An empirical evaluation using municipal and national census datasets / Kanta Sayuda in Transactions in GIS, vol 26 n° 7 (November 2022)
[article]
Titre : Accuracy of vacant housing detection models: An empirical evaluation using municipal and national census datasets Type de document : Article/Communication Auteurs : Kanta Sayuda, Auteur ; Euijung Hong, Auteur ; Yuki Akiyama, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3003 - 3027 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] géocodage
[Termes IGN] immobilier (secteur)
[Termes IGN] Japon
[Termes IGN] logementRésumé : (auteur) In Japan, the rise in vacant housing has created the need to develop quick, effective, and inexpensive methods to detect the spatial distribution of vacant housing at the municipal level. However, due to incomplete and inaccessible data, the change in the accuracy of the vacant housing detection model must be evaluated while accounting for the limited data. Therefore, this study compares the performance of vacant housing detection models for different data combinations (Basic Resident Register; building registration, water usage, and national census) by considering Wakayama City, Japan, as the case study setting. Three main findings emerged: (1) the contribution of the data to the accuracy varies with the combination of datasets and metrics; (2) even if specific municipal data are unavailable, it is possible to acquire a similar accuracy by combining other data; and (3) the missing value contributes to the vacant housing detection rather than the feature value itself. Numéro de notice : A2022-887 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12992 Date de publication en ligne : 31/10/2022 En ligne : https://doi.org/10.1111/tgis.12992 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102217
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 3003 - 3027[article]Identify urban building functions with multisource data: a case study in Guangzhou, China / Yingbin Deng in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Identify urban building functions with multisource data: a case study in Guangzhou, China Type de document : Article/Communication Auteurs : Yingbin Deng, Auteur ; Renrong Chen, Auteur ; Yang Ji, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2060 - 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approche hiérarchique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment industriel
[Termes IGN] bâtiment public
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] données multisources
[Termes IGN] empreinte
[Termes IGN] exploration de données
[Termes IGN] Extreme Gradient Machine
[Termes IGN] figure géométrique
[Termes IGN] image Gaofen
[Termes IGN] logement
[Termes IGN] point d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) Building function type is an important parameter for urban planning and disaster management. However, existing identification methods do not always correctly recognize all building functions because of missing point of interest (POI) data in private areas. In this study, we proposed a hierarchical data-mining model to identify building function types using accessible auxiliary data, which was then applied to a case study. Residential building property was assessed to address missing residential POIs. The building functions were assigned to one of five different types, or a mixed-function type. Standard deviation and mean values extracted from remotely sensed images, distances to major roads, and building shape parameters were used to infer the function types of buildings without assigned function types. The proposed model was able to identify 65% of buildings not previously assigned as residential through the POI, with an overall accuracy of 87%. In addition, all buildings were successfully assigned a function type of residential, commercial, office, warehouse, public service, or mixed-function, with an overall accuracy of 85% for unclassified buildings. Our results demonstrated that missing POI data in private areas could be addressed by integration with multisource data using a simple method. Numéro de notice : A2022-739 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2046756 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2046756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101716
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2060 - 2085[article]Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery / Shengyuan Zou in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
[article]
Titre : Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery Type de document : Article/Communication Auteurs : Shengyuan Zou, Auteur ; Le Wang, Auteur Année de publication : 2022 Article en page(s) : n° 103018 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection d'objet
[Termes IGN] image à très haute résolution
[Termes IGN] image Streetview
[Termes IGN] logement
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] zone urbaineRésumé : (auteur) Abandoned houses (AH) present an utmost challenge confronting the urban environment in contemporary U.S. shrinking cities. Data accessibility is a major hurdle that prevents the acquisition of large-scale AH information at the individual property level. To this end, the latest revolution of open-access remote sensing platforms has witnessed a plethora of multi-source, multi-perspective fine-spatial-resolution data for urban environments, among which very-high-resolution (VHR) top-down view remote sensing images and horizontal-perspective Google Street View (GSV) images are prominent exemplifiers. In this study, we aim to map individual-level abandoned houses across cities by developing a method that can effectively leverage VHR remote sensing and GSV images. The proposed method is composed of four steps. First, we explored the feasibility of the three most relevant and complementary remote sensing data for individual-level AH detection, i.e., daytime VHR images, nighttime light VHR images, and GSV images. Second, we extracted discriminative features that are indicative of housing abandonment conditions from the three disparate data sources. Third, we applied decision-level fusion with Dempster-Shafer Theory (DST) to better leverage the prior knowledge about data effectiveness. In the last step, a geographical random forests (GRF) model was first implemented to improve the predictions of where houses were occluded on GSV images. We mapped individual AH in two typical U.S. shrinking cities, Buffalo, NY, and Cleveland, OH, which allowed us to further explore the individual-property-level spatial characteristics of AH. Results revealed that the proposed DST fusion and GRF prediction consistently achieved promising performance across the two cities. Given the merits of incorporating open-access and multi-perspective data, our proposed method has the potential to be generalized to understanding regional and national-scale urban environments tackling housing abandonment challenges. Numéro de notice : A2022-788 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103018 Date de publication en ligne : 18/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101894
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 103018[article]Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference Type de document : Article/Communication Auteurs : Xiao Huang, Auteur ; Yang Xu, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1939 - 1961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] disparité
[Termes IGN] distribution spatiale
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] inférence statistique
[Termes IGN] logement
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode robusteRésumé : (auteur) In this study, we aim to reveal hidden patterns and confounders associated with policy implementation and adherence by investigating the home-dwelling stages from a data-driven perspective via Bayesian inference with weakly informative priors and by examining how home-dwelling stages in the USA varied geographically, using fine-grained, spatial-explicit home-dwelling time records from a multi-scale perspective. At the U.S. national level, two changepoints are identified, with the former corresponding to March 22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter corresponding to May 17, 2020. Inspections at U.S. state and county level reveal notable spatial disparity in home-dwelling stage-related variables. A pilot study in the Atlanta Metropolitan area at the Census Tract level reveals that the self-quarantine duration and increase in home-dwelling time are strongly correlated with the median household income, echoing existing efforts that document the economic inequity exposed by the U.S. stay-at-home orders. To our best knowledge, our work marks a pioneering effort to explore multi-scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner. Numéro de notice : A2022-533 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1111/tgis.12918 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1111/tgis.12918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101081
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1939 - 1961[article]Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)PermalinkGIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)PermalinkA geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkMultiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)PermalinkIdentifying home locations in human mobility data: an open-source R package for comparison and reproducibility / Qingqing Chen in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)PermalinkSpatial multi-criteria evaluation in 3D context: suitability analysis of urban vertical development / Kendra Munn in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)PermalinkUne base de données pour étudier vingt années de dynamiques du marché immobilier résidentiel en Île-de-France / Thibault Le Corre in Cybergeo, European journal of geography, n° 2021 ([01/02/2021])PermalinkEstimating the impacts of proximity to public transportation on residential property values: An empirical analysis for Hartford and Stamford areas, Connecticut / Bo Zhang in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)PermalinkPermalink