Descripteur
Documents disponibles dans cette catégorie (23)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Change alignment-based image transformation for unsupervised heterogeneous change detection / Kuowei Xiao in Remote sensing, vol 14 n° 21 (November-1 2022)
[article]
Titre : Change alignment-based image transformation for unsupervised heterogeneous change detection Type de document : Article/Communication Auteurs : Kuowei Xiao, Auteur ; Yuli Sun, Auteur ; Lin Lei, Auteur Année de publication : 2022 Article en page(s) : n° 5622 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] décomposition d'image
[Termes IGN] détection de changement
[Termes IGN] données hétérogènes
[Termes IGN] masqueRésumé : (auteur) Change detection (CD) with heterogeneous images is currently attracting extensive attention in remote sensing. In order to make heterogeneous images comparable, the image transformation methods transform one image into the domain of another image, which can simultaneously obtain a forward difference map (FDM) and backward difference map (BDM). However, previous methods only fuse the FDM and BDM in the post-processing stage, which cannot fundamentally improve the performance of CD. In this paper, a change alignment-based change detection (CACD) framework for unsupervised heterogeneous CD is proposed to deeply utilize the complementary information of the FDM and BDM in the image transformation process, which enhances the effect of domain transformation, thus improving CD performance. To reduce the dependence of the transformation network on labeled samples, we propose a graph structure-based strategy of generating prior masks to guide the network, which can reduce the influence of changing regions on the transformation network in an unsupervised way. More importantly, based on the fact that the FDM and BDM are representing the same change event, we perform change alignment during the image transformation, which can enhance the image transformation effect and enable FDM and BDM to effectively indicate the real change region. Comparative experiments are conducted with six state-of-the-art methods on five heterogeneous CD datasets, showing that the proposed CACD achieves the best performance with an average overall accuracy (OA) of 95.9% on different datasets and at least 6.8% improvement in the kappa coefficient. Numéro de notice : A2022-855 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14215622 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.3390/rs14215622 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102103
in Remote sensing > vol 14 n° 21 (November-1 2022) . - n° 5622[article]Improving image segmentation with boundary patch refinement / Xiaolin Hu in International journal of computer vision, vol 130 n° 11 (November 2022)
[article]
Titre : Improving image segmentation with boundary patch refinement Type de document : Article/Communication Auteurs : Xiaolin Hu, Auteur ; Chufeng Tang, Auteur ; Hang Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2571 - 2589 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] détection de contours
[Termes IGN] distance euclidienne
[Termes IGN] masque
[Termes IGN] segmentation d'image
[Termes IGN] segmentation fondée sur les contours
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Tremendous efforts have been made on image segmentation but the mask quality is still not satisfactory. The boundaries of predicted masks are usually imprecise due to the low spatial resolution of feature maps and the imbalance problem caused by the extremely low proportion of boundary pixels. To address these issues, we propose a conceptually simple yet effective post-processing refinement framework, termed BPR, to improve the boundary quality of the prediction of any image segmentation model. Following the idea of looking closer to segment boundaries better, we extract and refine a series of small boundary patches along the predicted boundaries. The refinement is accomplished by a boundary patch refinement network at the higher resolution. The trained BPR model can be easily transferred to refine the results of other models as well. Extensive experiments show that the proposed BPR framework yields significant improvements on the semantic, instance, and panoptic segmentation tasks over a variety of baselines on the Cityscapes dataset. Numéro de notice : A2022-741 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01662-0 Date de publication en ligne : 12/08/2022 En ligne : https://doi.org/10.1007/s11263-022-01662-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101719
in International journal of computer vision > vol 130 n° 11 (November 2022) . - pp 2571 - 2589[article]Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Aerial and UAV images for photogrammetric analysis of Belvedere Glacier evolution in the period 1977–2019 / Carlo Lapige De Gaetani in Remote sensing, vol 13 n° 18 (September-2 2021)
[article]
Titre : Aerial and UAV images for photogrammetric analysis of Belvedere Glacier evolution in the period 1977–2019 Type de document : Article/Communication Auteurs : Carlo Lapige De Gaetani, Auteur ; Francesco Loli, Auteur ; Livio Pinto, Auteur Année de publication : 2021 Article en page(s) : n° 3787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] données maillées
[Termes IGN] glacier
[Termes IGN] glaciologie
[Termes IGN] historique des données
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] masque
[Termes IGN] modèle numérique de surface
[Termes IGN] Piémont (Italie)
[Termes IGN] point d'appui
[Termes IGN] restitution analogique
[Termes IGN] structure-from-motionRésumé : (auteur) Alpine glaciers are strongly suffering the consequences of the temperature rising and monitoring them over long periods is of particular interest for climate change tracking. A wide range of techniques can be successfully applied to survey and monitor glaciers with different spatial and temporal resolutions. However, going back in time to retrace the evolution of a glacier is still a challenging task. Historical aerial images, e.g., those acquired for regional cartographic purposes, are extremely valuable resources for studying the evolution and movement of a glacier in the past. This work analyzed the evolution of the Belvedere Glacier by means of structure from motion techniques applied to digitalized historical aerial images combined with more recent digital surveys, either from aerial platforms or UAVs. This allowed the monitoring of an Alpine glacier with high resolution and geometrical accuracy over a long span of time, covering the period 1977–2019. In this context, digital surface models of the area at different epochs were computed and jointly analyzed, retrieving the morphological dynamics of the Belvedere Glacier. The integration of datasets dating back to earlier times with those referring to surveys carried out with more modern technologies exploits at its full potential the information that at first glance could be thought obsolete, proving how historical photogrammetric datasets are a remarkable heritage for glaciological studies. Numéro de notice : A2021-753 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13183787 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.3390/rs13183787 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98745
in Remote sensing > vol 13 n° 18 (September-2 2021) . - n° 3787[article]Reducing shadow effects on the co-registration of aerial image pairs / Matthew Plummer in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)PermalinkMulti-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering / Liyuan Ma in European journal of remote sensing, vol 53 n° 1 (2020)PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)PermalinkUne nouvelle méthode de vectorisation du cadastre ancien / Antony Chalais in Géomatique expert, n° 129 (août - septembre 2019)PermalinkBuilding detection and regularisation using DSM and imagery information / Yousif A. Mousa in Photogrammetric record, vol 34 n° 165 (March 2019)PermalinkCaractérisation et qualification de Modèles Numériques de Surfaces (MNS) - Analyse de la cohérence avec des masques d’eau / Guillaume Sutter (2018)PermalinkConception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols / Luc Baudoux (2018)PermalinkSuivi et conservation du patrimoine historique et culturel / Jocelyn Le Maître (2018)PermalinkTesting, analysis and improvement of FGI-NLS Sentinel-2 data processing chain for land use applications / Emile Blettery (2018)PermalinkAutomatic production of large-scale cloud-free orthomosaics from multitemporal satellite images / Nicolas Champion (2017)Permalink