Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > segmentation > algorithme de décalage moyen
algorithme de décalage moyen |
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Individual tree extraction from UAV lidar point clouds based on self-adaptive mean shift segmentation / Zhenyang Hui in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2021 (July 2021)
[article]
Titre : Individual tree extraction from UAV lidar point clouds based on self-adaptive mean shift segmentation Type de document : Article/Communication Auteurs : Zhenyang Hui, Auteur ; N. Li, Auteur ; Y. Xia, Auteur ; Penggen Cheng, Auteur ; Y. He, Auteur Année de publication : 2021 Conférence : ISPRS 2021, Commission 1, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice on-line France OA Annals Commission 1 Article en page(s) : pp 25 - 30 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de décalage moyen
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Unman aerial vehicle (UAV) LiDAR has been widely used in the field of forestry. Individual tree extraction is a key step for forest inventory. Although many individual tree extraction methods have been proposed, the individual tree extraction accuracy is still low due to the complex forest environments. Moreover, many parameters in these methods generally need to be set. Thus, the degree of automation of the methods is generally low. To solve these problems, this paper proposed an automatic mean shift segmentation method, in which the kernel bandwidths can be calculated self-adaptively. Meanwhile, a hierarchy mean shift segmentation technique was proposed to extract individual tree gradually. A plot-level UAV LiDAR tree dataset was adopted for testing the performance of the proposed method. Experimental results showed that the proposed method can achieve better individual tree extraction result without any parameter setting. Compared with the traditional mean shift segmentation method, both the completeness and mean accuracy of the proposed method are higher. Numéro de notice : A2021-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-1-2021-25-2021 Date de publication en ligne : 17/06/2021 En ligne : https://doi.org/10.5194/isprs-annals-V-1-2021-25-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97950
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-1-2021 (July 2021) . - pp 25 - 30[article]The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods Type de document : Article/Communication Auteurs : Akhtar Jamil, Auteur ; Bulent Bayram, Auteur Année de publication : 2021 Article en page(s) : pp 758 - 772 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de décalage moyen
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] Camellia sinensis
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] exploitation agricole
[Termes IGN] extraction de la végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] segmentation hiérarchique
[Termes IGN] TurquieRésumé : (Auteur) Rize district is an important tea production site in Turkey, which is known for high quality tea. Determining the temporal changes is very crucial from the viewpoint of agricultural management and protection of tea areas. In addition, delineation of tea gardens using photogrammetric evaluation techniques for a single orthoimage takes approximately 8 h of labour work, which is both costly and time-consuming process. To overcome these issues, a method is proposed for demarcation of tea gardens from high-resolution orthoimages. In this article, a hierarchical object-based segmentation using mean-shift (MS) and supervised machine learning (ML) methods are investigated for delineation of tea gardens. First, the MS algorithm was applied to partition the images into homogeneous segments (objects) and then from each segment, various spectral, spatial and textural features were extracted. Finally, four most widely used supervised ML classifiers, support vector machine (SVM), artificial neural network (ANN), random forest (RF), and decision trees (DTs), were selected for classification of objects into tea gardens and other types of trees. Photogrammetrically evaluated tea garden borders were taken as reference data to evaluate the performance of the proposed methods. The experiments showed that all selected supervised classifiers were effective for delineation of the tea gardens from high-resolution images. Numéro de notice : A2021-293 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622597 Date de publication en ligne : 19/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1622597 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97349
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 758 - 772[article]A spaceborne SAR-based procedure to support the detection of landslides / Giuseppe Esposito in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
[article]
Titre : A spaceborne SAR-based procedure to support the detection of landslides Type de document : Article/Communication Auteurs : Giuseppe Esposito, Auteur ; Ivan Marchesini, Auteur ; Alessandro Cesare Mondini, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2379 - 2395 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] algorithme de décalage moyen
[Termes IGN] cartographie des risques
[Termes IGN] correction d'image
[Termes IGN] détection de changement
[Termes IGN] effondrement de terrain
[Termes IGN] gestion des risques
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] ligne de rupture de pente
[Termes IGN] modèle de simulation
[Termes IGN] Papouasie-Nouvelle-Guinée
[Termes IGN] risque naturel
[Termes IGN] segmentation d'image
[Termes IGN] traitement automatique de donnéesRésumé : (auteur) The increasing availability of free-access satellite data represents a relevant opportunity for the analysis and assessment of natural hazards. The systematic acquisition of spaceborne imagery allows for monitoring areas prone to geohydrological disasters, providing relevant information for risk evaluation and management. In cases of major landslide events, for example, spaceborne radar data can provide an effective solution for the detection of slope failures, even in cases with persistent cloud cover. The information about the extension and location of the landslide-affected areas may support decision-making processes during emergency responses. In this paper, we present an automatic procedure based on Sentinel-1 Synthetic Aperture Radar (SAR) images, aimed at facilitating the detection of landslides over wide areas. Specifically, the procedure evaluates changes of radar backscattered signals associated with land cover modifications that may be also caused by mass movements. After a one-time calibration of some parameters, the processing chain is able to automatically execute the download and preprocessing of images, the detection of SAR amplitude changes, and the identification of areas potentially affected by landslides, which are then displayed in a georeferenced map. This map should help decision makers and emergency managers to organize field investigations. The process of automatization is implemented with specific scripts running on a GNU/Linux operating system and exploiting modules of open-source software. We tested the processing chain, in back analysis, on an area of about 3000 km2 in central Papua New Guinea that was struck by a severe seismic sequence in February–March 2018. In the area, we simulated a periodic survey of about 7 months, from 12 November 2017 to 6 June 2018, downloading 36 Sentinel-1 images and performing 17 change detection analyses automatically. The procedure resulted in statistical and graphical evidence of widespread land cover changes that occurred just after the most severe seismic events. Most of the detected changes can be interpreted as mass movements triggered by the seismic shaking. Numéro de notice : A2020-611 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/nhess-20-2379-2020 Date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.5194/nhess-20-2379-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95976
in Natural Hazards and Earth System Sciences > vol 20 n° 9 (September 2020) . - pp 2379 - 2395[article]Piecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-2/W5 (May 2019)
[article]
Titre : Piecewise-planar approximation of large 3D data as graph-structured optimization Type de document : Article/Communication Auteurs : Stéphane Guinard , Auteur ; Loïc Landrieu , Auteur ; Laurent Caraffa , Auteur ; Bruno Vallet , Auteur Année de publication : 2019 Projets : 1-Pas de projet / Conférence : ISPRS 2019, Geospatial Week 10/06/2019 14/06/2019 Enschede Pays-Bas ISPRS OA Annals Article en page(s) : pp 365 - 372 Note générale : bibliographie
The authors would like to acknowledge the DGA for their financial support of this work.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de décalage moyen
[Termes IGN] analyse de groupement
[Termes IGN] approximation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] érosion anthropique
[Termes IGN] erreur d'approximation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] maillage
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] surface planeRésumé : (auteur) We introduce a new method for the piecewise-planar approximation of 3D data, including point clouds and meshes. Our method is designed to operate on large datasets (e.g. millions of vertices) containing planar structures, which are very frequent in anthropic scenes. Our approach is also adaptive to the local geometric complexity of the input data. Our main contribution is the formulation of the piecewise-planar approximation problem as a non-convex optimization problem. In turn, this problem can be efficiently solved with a graph-structured working set approach. We compare our results with a state-of-the-art region-growing-based segmentation method and show a significant improvement both in terms of approximation error and computation efficiency. Numéro de notice : A2019-592 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-IV-2-W5-365-2019 Date de publication en ligne : 29/05/2019 En ligne : https://doi.org/10.5194/isprs-annals-IV-2-W5-365-2019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94552
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol IV-2/W5 (May 2019) . - pp 365 - 372[article]A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas / Martin Weinmann in Remote sensing, vol 9 n° 3 (March 2017)
[article]
Titre : A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas Type de document : Article/Communication Auteurs : Martin Weinmann, Auteur ; Michael Weinmann, Auteur ; Clément Mallet , Auteur ; Mathieu Brédif , Auteur Année de publication : 2017 Projets : IQmulus / Métral, Claudine Article en page(s) : pp 277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de décalage moyen
[Termes IGN] arbre (flore)
[Termes IGN] classification
[Termes IGN] Delft (Pays-Bas)
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] voxel
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, we present a novel framework for detecting individual trees in densely sampled 3D point cloud data acquired in urban areas. Given a 3D point cloud, the objective is to assign point-wise labels that are both class-aware and instance-aware, a task that is known as instance-level segmentation. To achieve this, our framework addresses two successive steps. The first step of our framework is given by the use of geometric features for a binary point-wise semantic classification with the objective of assigning semantic class labels to irregularly distributed 3D points, whereby the labels are defined as “tree points” and “other points”. The second step of our framework is given by a semantic segmentation with the objective of separating individual trees within the “tree points”. This is achieved by applying an efficient adaptation of the mean shift algorithm and a subsequent segment-based shape analysis relying on semantic rules to only retain plausible tree segments. We demonstrate the performance of our framework on a publicly available benchmark dataset, which has been acquired with a mobile mapping system in the city of Delft in the Netherlands. This dataset contains 10.13 M labeled 3D points among which 17.6 % are labeled as “tree points”. The derived results clearly reveal a semantic classification of high accuracy (up to 90.77 %) and an instance-level segmentation of high plausibility, while the simplicity, applicability and efficiency of the involved methods even allow applying the complete framework on a standard laptop computer with a reasonable processing time (less than 2.5 h) Numéro de notice : A2017-140 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs9030277 Date de publication en ligne : 16/03/2017 En ligne : http://doi.org/10.3390/rs9030277 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84614
in Remote sensing > vol 9 n° 3 (March 2017) . - pp 277[article]An attempt to determine the effect of increase of observation correlations on detectability and identifiability of a single gross error / Witold Proszynski in Geodesy and cartography, vol 65 n° 2 (December 2016)PermalinkStable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images / Julien Michel in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)PermalinkApplication à large échelle de techniques d'analyse d'images basées objet pour l'imagerie satellite à très haute résolution / David Youssefi in Revue Française de Photogrammétrie et de Télédétection, n° 209 (Janvier 2015)PermalinkIndividual tree segmentation over large areas using airborne LiDAR point cloud and very high resolution optical imagery / Yuchu Qin (2014)PermalinkComparaison entre les méthodes J-SEG et MeanShift : application sur des données THRS / Rabia Sarah Cheriguene in Revue Française de Photogrammétrie et de Télédétection, n° 203 (Juillet 2013)PermalinkOn the formulation of the alternative hypothesis for geodetic outlier detection / Rüdiger Lehmann in Journal of geodesy, vol 87 n° 4 (April 2013)Permalink3-D mapping of a multi-layered Mediterranean forest using ALS data / António Ferraz in Remote sensing of environment, vol 121 (June 2012)Permalink3D segmentation of forest structure using an adaptive mean shift based procedure / António Ferraz (2010)PermalinkPermalinkA layered stereo matching algorithm using segmentation and global visibility constraints / M. Bleyer in ISPRS Journal of photogrammetry and remote sensing, vol 59 n° 3 (May 2005)Permalink